Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 93-99    DOI: 10.11868/j.issn.1001-4381.2019.000685
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能
陈丹玲, 黄志强, 何新华
华南理工大学 材料科学与工程学院, 广州 510641
Microstructure and electrical properties of Ta-doped Na0.5Bi4.5Ti4O15 ceramics
CHEN Dan-ling, HUANG Zhi-qiang, HE Xin-hua
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
全文: PDF(4491 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用固相烧结法制备铋层结构Na0.5Bi4.5TaxTi4-xO15+0.5x(NBT-Ta-x)(x=0~0.20)压电陶瓷。采用X射线衍射、扫描电镜和自动控温测试系统研究Ta5+的B位掺杂对NBT-Ta-x陶瓷的微观结构、电导、介电和压电性能的影响。结果表明:随Ta掺杂量的增加,晶粒尺寸和长径比逐渐减小,表现出沿c轴的取向生长,同时,陶瓷的理论密度和体积密度增加,在掺杂量x=0.05时达到最高的相对密度96.1%,Ta在NBT晶格中的固溶极限在0.10附近。随Ta5+掺杂量x增加到0.20,陶瓷的居里温度从680℃降至658℃。Ta5+掺杂使NBT-Ta-x陶瓷的电阻率增加了两个数量级,压电常数d33从13.8 pC/N增加到23 pC/N。当x=0.04~0.05时,NBT-Ta-x陶瓷的综合电性能良好:Tc=670~672℃,d33=21.8~23 pC/N,kp=7.9%~8.3%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈丹玲
黄志强
何新华
关键词 Na0.5Bi4.5Ti4O15铋层结构Ta5+掺杂介电性能压电性能    
Abstract:Bismuth layer structured piezoelectric ceramics, Na0.5Bi4.5TaxTi4-xO15+0.5x (NBT-Ta-x)(x=0-0.20), were fabricated via a solid state sintering process. The effect of Ta5+ doping for B site on the microstructure, electrical conductivity,dielectric and piezoelectric properties of NBT-Ta-x ceramics was investigated by means of XRD, SEM and an automatic temperature control testing system. The results show that Ta doping brings about the decrease in grain size and aspect ratio of grain with a preferable orientation growth along c-axis. Meanwhile, both theoretical density and measured density of the ceramics is increased with increasing tantalum doping content, with the highest relative density of 96.1% at x=0.05, showing that the solid solution limit of tantalum in NBT lattice is in the proximity of x=0.10. The Curie temperature is decreased slightly from 680℃ to 658℃ with the increase of Ta5+ doping content x to 0.20. The electrical resistivity of NBT-Ta-x ceramics is increased as much as about two orders of magnitude by Ta5+ modification and the piezoelectric constant d values is increased significantly from 13.8 pC/N to 23 pC/N. The x=0.04-0.05 samples exhibit the optimal electrical performance:Tc=670-672℃,d33=21.8-23 pC/N, kp=7.9%-8.3%.33
Key wordsNa0.5Bi4.5Ti4O15    bismuth layer structure    Ta5+ doping    dielectric property    piezoelectric property
收稿日期: 2019-07-22      出版日期: 2020-09-17
中图分类号:  TM282  
通讯作者: 何新华(1969-),女,副教授,博士,主要研究方向为介电、压电陶瓷材料,联系地址:广东省广州市天河区五山路381号华南理工大学材料学院(510641),E-mail:imxhhe@scut.edu.cn     E-mail: imxhhe@scut.edu.cn
引用本文:   
陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
CHEN Dan-ling, HUANG Zhi-qiang, HE Xin-hua. Microstructure and electrical properties of Ta-doped Na0.5Bi4.5Ti4O15 ceramics. Journal of Materials Engineering, 2020, 48(9): 93-99.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000685      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/93
[1] ABAH R, GAI Z G, ZHAN S Q, et al. The effect of B-site (W/Nb) co-substituting on the electrical properties of sodium bismuth titanate high temperature piezoceramics[J]. Journal of Alloys and Compounds, 2016, 664:1-4.
[2] WANG C M, WANG J F, ZHANG S, et al. Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature[J]. Journal of Applied Physics, 2009, 105:094110.
[3] DU H, SHI X. Dielectric and piezoelectric properties of barium-modified Aurivillius-type Na0.5Bi4.5Ti4O15[J]. Journal of Physics and Chemistry of Solids, 2011, 72:1279-1283.
[4] ALBERTO M. Review and perspectives of Aurivillius structures as a lead-free piezoelectric system[J]. Applied Science, 2018, 8(1):62-77.
[5] 黄新友,童晓峰,徐国强,等. MBi4Ti4O15基陶瓷的研究现状与发展趋势[J]. 电子元件与材料,2013,32(1):79-84. HUANG X Y, TONG X F, XU G Q, et al. Research and development of MBi4Ti4O15-based ceramics[J]. Electronic Components and Materials, 2013, 32(1):79-84.
[6] YAO Z, CHU R, XU Z, et al.Thermal stability and enhanced electrical properties of Er3+-modified Na0.5Bi4.5Ti4O15 lead-free piezoelectric ceramics[J].RSC Advances,2016,97(6):94870-94875.
[7] CHEN Y, ZHANG C C, QIN L, et al. Enhanced dielectric and piezoelectric properties in Na0.5Bi4.5Ti4O15 ceramics with Pr-doping[J]. Ceramics International, 2018, 44(15):18264-18270.
[8] 邢星河,曹峰,彭志航,等. Co掺杂对CaBi2Nb2O9陶瓷结构和电学性能的影响[J]. 材料工程,2018, 46(8):36-42. XING X H, CAO F, PENG Z H, et al. Effect of Co doping on the structural and electrical properties of CaBi2Nb2O9 ceramics[J]. Journal of Materials Engineering, 2018, 46(8):36-42.
[9] HAN W H, KOH J H. Shrinkage mechanism and enhanced piezoelectric properties of Ta doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 lead free ceramics[J].Ceramics International,2018,44:5352-5358.
[10] JEAN F, SCHOENSTEIN F, ZAGHRIOUI M, et al. Composite microstructures and piezoelectric properties in tantalum substituted lead-free K0.5Na0.5Nb1-xTaxO3 ceramics[J]. Ceramics International, 2018, 44:9463-9471.
[11] KUMAR K, SINHA N, BHANDARI S, Enhanced dielectric and piezoelectric properties of Ta-doped 0.50(Na0.5Bi0.5)TiO3-0.50(K0.5Bi0.5)TiO3 lead-free ferroelectric ceramics[J]. Ceramics International, 2015, 41:10237-10242.
[12] XU Y H, LIU X M, WANG G D, et al. Antiferroelectricity in tantalum doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics[J]. Ceramics International, 2016, 42:4313-4322.
[13] HONG S H, HORN J A, TROLIER-MCKINSTRY S, et al. Dielectric and ferroelectric properties of Ta-doped bismuth titanate[J]. Journal of Materials Science Letters, 2000, 19(18):1661-1664.
[14] HOU J G, KUMAR R V, QU Y F, et al. B-site doping effect on electrical properties of Bi4Ti3-2xNbxTaxO12 ceramics[J]. Scripta Materialia, 2009, 61(6):664-667.
[15] NAGATA H, CHIKUSHI N, TAKENAKA T. Ferroelectric properties of bismuth layer-structured compound SrxBi4-xTi3-xTaxO12(0≤ x ≤ 2)[J]. Japanese Journal of Applied Physics, 1999, 38:5497-5499.
[16] KALEVA G M, POLITOVA E D, MOSUNOY A V, et al. Phase formation and dielectric properties of ferroelectric CaBi4Ti3.6B0.4O15 ceramics (B-Ti, Cr, Ta)[J]. Ferroelectrics, 2012, 426(1):152-159.
[17] 邵虹,江向平,傅小龙,等. Nb, Ta掺杂Na0.5Bi4.5Ti4O15铋层状陶瓷的性能研究[J]. 压电与声光,2015,37(2):307-310. SHAO H, JIANG X P, FU X L, et al. Study on bismuth layer-structured piezoelectric ceramics Na0.5Bi4.5Ti4O15 with niobium and tantalum modification[J]. Piezoelectrics and Acoustooptics, 2015, 37(2):307-310.
[18] SUBBARAO E C. Crystal chemistry of mixed bismuth oxides with layer-type structure[J]. Journal of the American Ceramic Society, 1962, 45(4):166-169.
[19] LI C, KHALIQ J, NING H, et al. Study on properties of tantalum-doped La2Ti2O7 ferroelectric ceramics[J]. Journal of Advanced Dielectrics, 2015, 5(1):1550005.
[20] TANWAR A, SREENIVAS K, GUPTA V. Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics[J]. Journal of Applied Physics, 2009, 105:084105.
[21] JIANG X P, JIANG X A, CHEN C, et al. Effect of potassium sodium niobate (KNN) substitution on the structural and electrical properties of Na0.5Bi4.5Ti4O15 ceramics[J]. Journal of Physics:D, 2016, 49:125101.
[22] MOGENSEN M, LYBYE D, BONANOS N, et al. Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides[J]. Solid State Ionics, 2004, 174:279-286.
[23] SUBBARAO E C. A family of ferroelectric bismuth compounds with high Curie temperatures[J]. IRE Transactions on Electron Devices, 2005, 8(5):422.
[24] YUAN C L, LIU X Y, ZHOU C R, et al. Characterization of the BaBiO3-doped BaTiO3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with Tc=155℃[J]. Chinese Physics:B, 2011, 20(4):543-550.
[1] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[2] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[3] 陈宇飞, 耿成宝, 郭红缘, 岳春艳, 柴铭茁. KH-SiO2/PES/BMI-F51复合材料的介电性能[J]. 材料工程, 2019, 47(8): 103-109.
[4] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[5] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[6] 邢星河, 曹峰, 彭志航, 曾祥雄. Co掺杂对CaBi2Nb2O9陶瓷结构和电学性能的影响[J]. 材料工程, 2018, 46(8): 36-42.
[7] 亢静锐, 董桂霞, 吕易楠, 李雷, 韩伟丹, 张茜. Eu2O3掺杂量及烧结温度对氧化铝基微波陶瓷性能的影响[J]. 材料工程, 2018, 46(8): 78-83.
[8] 赵晓明, 刘元军. 铁氧体/碳化硅/石墨三层涂层复合材料介电性能[J]. 材料工程, 2017, 45(1): 33-37.
[9] 宋洪松, 赵天宇, 杨程. 表面处理对CCTO/PVDF复合材料介电性能的影响[J]. 材料工程, 2014, 0(8): 27-31.
[10] 孙莉莉, 钟艳莉. 碳纳米纤维/高密度聚乙烯复合材料结晶行为和介电性能的研究[J]. 材料工程, 2013, 0(4): 17-22.
[11] 戴斌, 朱海奎, 周洪庆, 吴路燕, 岳振星. 含碱金属离子的CaO-B2O3-SiO2系玻璃陶瓷性能研究[J]. 材料工程, 2012, 0(8): 65-68,72.
[12] 肇研, 董昊, 胡建平, 李翔, 刘建华. 湿热循环对Nomex蜂窝/环氧树脂夹层复合材料性能的影响[J]. 材料工程, 2012, 0(6): 1-6.
[13] 孙雨薇, 王树彬, 张健. CBS涂层对多孔氮化硅高温高频介电性能的影响[J]. 材料工程, 2011, 0(2): 42-45.
[14] 胡建平, 蔡吉喆, 肇研, 刘建华. Nomex/氰酸酯树脂夹层复合材料耐湿热性研究[J]. 材料工程, 2010, 0(9): 58-61.
[15] 杨程, 成波, 滕乐金, 王锦鹏. 金-烷基硫醇的自组装及其聚合物基复合材料的介电性能[J]. 材料工程, 2010, 0(5): 34-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn