Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (7): 154-161    DOI: 10.11868/j.issn.1001-4381.2019.000694
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响
高禹1,*(), 刘京1, 王进2, 王柏臣1, 崔旭1, 包建文3
1 沈阳航空航天大学 材料科学与工程学院, 沈阳 110136
2 沈阳飞机设计研究所, 沈阳 110035
3 先进复合材料国防科技重点实验室, 北京 100095
Effects of vacuum thermal cycle on low velocity impact properties of carbon fiber/BMI composites
Yu GAO1,*(), Jing LIU1, Jin WANG2, Bai-chen WANG1, Xu CUI1, Jian-wen BAO3
1 School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Shenyang Aircraft Design&Research Institute, Shenyang 110035, China
3 National Key Laboratory of Advanced Composites, Beijing 100095, China
全文: PDF(5128 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

对T700/HT280复合材料进行真空热循环处理(-140~180℃,10-3 Pa),分别测试真空热循环处理前后复合材料的质损率、动态力学性能和低速冲击性能。采用宏观目视、超声C扫描和有限元分析对低速冲击损伤状况进行分析、表征和模拟。结果表明,随真空热循环次数的增加,由于发生析气效应,T700/HT280复合材料及基体树脂的质损率先急剧升高然后趋于平缓。经历真空热循环处理后T700/HT280复合材料出现了一定程度的后固化、热老化和局部界面脱粘。低冲击能时主要损伤模式为基体树脂受到压缩,高冲击能时主要损伤模式转化为基体开裂、复合材料分层。有限元模拟结果与实验结果吻合。随冲击能量的增大,复合材料吸收能增加。冲击能量为30~40 J条件下,吸收能可以有效地表征出真空热循环对复合材料的环境损伤效应。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高禹
刘京
王进
王柏臣
崔旭
包建文
关键词 碳/树脂基复合材料真空热循环低速冲击性能动态力学热分析(DMA)有限元模拟超声C扫描    
Abstract

The T700/HT280 composites were subjected to vacuum thermal cycling (-140-180℃, 10-3 Pa). The mass loss rate, dynamic mechanical properties and low-speed impact of composites were tested before and after vacuum thermal cycling respectively. The visual observation, ultrasonic C-scan and finite element (FE) analysis were used to analyze, characterize and simulate the low-speed impact damage. The results show that the mass loss rates of T700/HT280 composites and matrix resin are increased rapidly and then level off with the increase of the number of vacuum thermal cycles, which is due to the gassing effect. After the vacuum thermal cycle treatment, T700/HT280 composites show some degree of post-cure, thermal aging and partial interface debonding. The main damage mode at low impact energy is that the matrix resin is compressed. However, matrix cracking and delamination are deemed as the damage mode at high impact energy. The FE simulation results are consistent with the experimental results. As the impact energy increases, the absorption energy of the composites is increased. Under the condition of 30-40 J impact energy, the absorption energy can effectively characterize the environmental damage effects of vacuum thermal cycle on composites.

Key wordscarbon/resin-based composites    vacuum thermal cycling    low-speed impact property    dyna-mic mechanical thermal analysis (DMA)    finite element (FE) simulation    ultrasonic C-scan
收稿日期: 2019-07-24      出版日期: 2020-07-21
中图分类号:  TB332  
基金资助:国家自然科学基金(51373102);辽宁省高等学校国(境)外培养基金(2018LNGXGJWPY-YB008)
通讯作者: 高禹     E-mail: syczq05@163.com
作者简介: 高禹(1971-), 男, 教授, 博士, 主要从事碳/树脂基复合材料在空间环境因素作用下损伤效应及机理的研究, 联系地址:辽宁省沈阳市沈北新区道义南大街37号沈阳航空航天大学材料科学与工程学院(110136), E-mail:syczq05@163.com
引用本文:   
高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
Yu GAO, Jing LIU, Jin WANG, Bai-chen WANG, Xu CUI, Jian-wen BAO. Effects of vacuum thermal cycle on low velocity impact properties of carbon fiber/BMI composites. Journal of Materials Engineering, 2020, 48(7): 154-161.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000694      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/154
Fig.1  材料制备工艺流程图
Fig.2  真空热循环处理的温度与时间曲线
Fig.3  HT280基体树脂和T700/HT280复合材料质损率曲线
Fig.4  真空热循环前后HT280树脂的储能模量(E′)与损耗因子(tanδ)温度谱
Material Sample tanδ peak correspondsto temperature/℃ tanδpeak
Resin Original state 313.53 0.290
Vacuum thermal cycling330.010.218
Composite Original state 281.32 0.101
Vacuum thermal cycling289.880.126
Table 1  真空热循环前后基体树脂及T700/HT280复合材料的tanδ峰对应温度及峰值
Fig.5  真空热循环前后T700/HT280复合材料的储能模量(E′)与损耗因子(tanδ)温度谱
Fig.6  经历真空热循环处理前后试样不同低速冲击能量作用下的宏观损伤对比图
(a),(c)原始态;(b),(d)真空热循环
Impact test Impact energy/J Pit depth/mm
Original state 13.35-30 Not obvious,0-0.15
40 0.17-0.21
50 1.43
60 Through
Vacuum thermalcycling 13.35-30 Not obvious,0-0.4
40 0.55
50 Cracking on the side,1.1-1.3
60 Through
Table 2  不同低速冲击能量作用下经历真空热循环前后试样的凹坑深度对比
Fig.7  真空热循前后T700/HT280复合材料在不同低速冲击能量下超声C扫描图像
(a)原始态;(b)真空热循环
Fig.8  模拟分析结果图
Fig.9  第1层(a)与第24层(b)对比图
Fig.10  模拟分析结果(a)与超声C扫描实际结果(b)比较
Fig.11  真空热循环处理前后不同冲击能量条件下吸收能变化曲线
1 AN J, ZHANG W, YANG D S.Atomic oxygen environment analysis technology for low earth orbit spacecraft[C]//Prognostics & System Health Management Conference.Harbin: IEEE, 2017.
2 WANG H D , MA G Z , XU B S , et al. The erosion effect of Kapton film in a ground-based atomic oxygen irradiation simulator[J]. Journal of Wuhan University of Technology(Mater Sci Ed), 2014, 29 (6): 1277- 1282.
doi: 10.1007/s11595-014-1081-6
3 ZHANG X , MAO L , DU J , et al. Atomic oxygen erosion resistance of sol-gel oxide films on Kapton[J]. Journal of Sol-Gel Science and Technology, 2014, 69 (3): 498- 503.
doi: 10.1007/s10971-013-3249-5
4 MINTON T K , WRIGHT M E , TOMCZAK S J , et al. Atomic Oxygen effects on POSS polyimides in low earth orbit[J]. ACS Applied Materials & Interfaces, 2012, 4 (2): 492- 502.
5 MLYNCZAK M G , HUNT L A , MAST J C , et al. Atomic oxygen in the mesosphere and lower thermosphere derived from SABER:algorithm theoretical basis and measurement uncertainty[J]. Journal of Geophysical Research:Atmospheres, 2013, 118 (11): 5724- 5735.
doi: 10.1002/jgrd.50401
6 都亨, 叶宗海. 低轨道航天器空间环境手册[M]. 北京: 国防工业出版社, 1996: 397- 520.
6 DU H , YE Z H . Handbook for space environment of low orbit spacecraft[M]. Beijing: National Defense Industry Press, 1996: 397- 520.
7 TANG J M , LEE S K . Recent progress of applications of advanced composite materials in aerospace industry[J]. Spacecraft Environment Engineering, 2010, 27 (5): 552- 557.
8 ZHENG N , HE J M , ZHAO D , et al. Improvement of atomic oxygen erosion resistance of carbon fiber and carbon fiber/epoxy composite interface with a silane coupling agent[J]. Materials & Design, 2016, 109, 171- 178.
9 王迎芬, 刘刚, 彭公秋, 等. 国产T700级碳纤维/双马来酰亚胺树脂复合材料界面性能[J]. 材料工程, 2018, 46 (4): 140- 145.
9 WANG Y F , LIU G , PENG G Q , et al. Interfacial properties of domestic T700 grade carbon fiber/bismaleimide resin composites[J]. Journal of Materials Engineering, 2018, 46 (4): 140- 145.
10 陈祥宝, 张凤翻. 先进树脂基结构复合材料的发展[J]. 材料工程, 1996, (6): 5- 12.
doi: 10.3969/j.issn.1005-5053.2000.01.009
10 CHEN X B , ZHANG F F . Development of advanced resin-based structural composites[J]. Journal of Materials Engineering, 1996, (6): 5- 12.
doi: 10.3969/j.issn.1005-5053.2000.01.009
11 GAO Y , HE S , YANG D Z , et al. Effect of vacuum thermo-cycling on physical properties of unidirectional M40J/AG-80 composites[J]. Composites:Part B, 2005, 36 (4): 351- 358.
doi: 10.1016/j.compositesb.2004.10.002
12 SHIN K B , KIM C G , HONG C S , et al. Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments[J]. Composites:Part B, 2000, 31, 223- 235.
doi: 10.1016/S1359-8368(99)00073-6
13 高禹, 王钊, 陆春, 等. 高性能树脂基复合材料典型空天环境下动态力学行为研究现状[J]. 材料工程, 2015, 43 (3): 106- 112.
13 GAO Y , WANG Z , LU C , et al. Research status of dynamic mechanical behavior of high performance resin matrix composites in typical space environment[J]. Journal of Materials Engineering, 2015, 43 (3): 106- 112.
14 高禹, 张志松, 王柏臣, 等. 空天飞行器用炭/双马复合材料环境损伤行为的研究现状[J]. 高分子材料科学与工程, 2013, 29 (6): 165- 168.
14 GAO Y , ZHANG Z S , WANG B C , et al. Research status of environmental damage behavior of carbon/BMI composites for aerospace vehicles[J]. Polymer Materials Science and Engineering, 2013, 29 (6): 165- 168.
15 过梅丽. 高聚物与复合材料的动态力学热分析[M]. 北京: 化学工业出版社, 2002: 196- 198.
15 GUO M L . Dynamic mechanical thermal analysis of polymers and composites[M]. Beijing: Chemical Industry Press, 2002: 196- 198.
16 LONG S C , YAO X H , ZHANG X Q . Delamination prediction in composite laminates under low-velocity impact[J]. Composite Structures, 2015, 132, 290- 298.
doi: 10.1016/j.compstruct.2015.05.037
[1] 李晓宇, 姜良宝, 刘家希, 王敏博, 李佳明, 颜悦. 化学强化铝硅酸盐玻璃表面微观力学行为的有限元模拟[J]. 材料工程, 2021, 49(7): 148-157.
[2] 赵家祥, 李建, 梁志鸿, 邱博, 阚前华. 超弹性NiTi合金率相关相变图案演化模拟[J]. 材料工程, 2021, 49(4): 102-110.
[3] 项瑶, 卢立伟, 吴木义, 马旻, 康伟, 刘欢, 唐伦圆. 6061铝合金膨胀-连续剪切变形行为[J]. 材料工程, 2020, 48(12): 111-118.
[4] 张景祺, 林健, 雷永平, 许海亮, 王细波. 316L超薄板激光焊接的失稳变形规律[J]. 材料工程, 2020, 48(12): 126-134.
[5] 李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
[6] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[7] 董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
[8] 聂恒昌, 徐吉峰, 关志东, 黎增山, 王鑫. 复合材料胶接修理层合板拉伸性能及影响参数[J]. 材料工程, 2017, 45(10): 124-131.
[9] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[10] 王东宁, 李嘉禄, 焦亚男. 平纹织物三维细观几何模型和织物防弹实验的有限元模拟[J]. 材料工程, 2013, 0(9): 69-74,78.
[11] 任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程, 2013, 0(10): 13-19.
[12] 樊梦婷, 孙明月, 李殿中. 大型压力机模座热处理过程模拟及工艺优化[J]. 材料工程, 2011, 0(11): 44-50.
[13] 余琨, 蔡志勇, 王晓艳, 史褆, 黎文献. 半连续铸造AZ31B镁合金连续热轧变形行为的数值模拟[J]. 材料工程, 2010, 0(9): 33-39.
[14] 徐尊平, 程南璞, 陈志谦. 7050铝合金等通道转角挤压的有限元模拟及力学性能[J]. 材料工程, 2008, 0(8): 1-4.
[15] 雷力明, 黄旭, 段锐, 曹春晓. 模具外角对高纯铝60°内角等通道转角挤压变形影响的有限元模拟[J]. 材料工程, 2008, 0(8): 57-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn