Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (8): 84-100    DOI: 10.11868/j.issn.1001-4381.2019.000704
  综述 本期目录 | 过刊浏览 | 高级检索 |
电化学法制备石墨烯的研究进展
高亚辉1,2, 尹国杰1,2, 张少文1,2, 王璐1, 孟巧静1, 李欣栋1
1. 洛阳理工学院 环境工程与化学学院, 河南 洛阳 471023;
2. 洛阳理工学院 河南省重金属污染土壤修复工程技术研究中心, 河南 洛阳 471023
Research progress in electrochemical preparation of graphene
GAO Ya-hui1,2, YIN Guo-jie1,2, ZHANG Shao-wen1,2, WANG Lu1, MENG Qiao-jing1, LI Xin-dong1
1. School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, Henan, China;
2. Henan Engineering Technology Research Center of Remediation of Heavy Metal Contaminated Soil, Luoyang Institute of Science and Technology, Luoyang 471023, Henan, China
全文: PDF(4627 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯优异的导电、导热、光学和力学性能,使其成为制造新一代电子、光电装置材料的理想选择。因此,高质量、规模化、低成本的石墨烯制备技术研究开发尤为重要。电化学剥离石墨制备石墨烯是一种很有前途的湿化学方法,具有可扩展性、溶液加工性和环境友好性等优点。本文综述了电化学法制备石墨烯技术的研究进展,阐述了电化学法制备石墨烯的机制,重点分析了石墨阳极氧化和阴极剥离过程涉及因素变化对石墨烯的剥离效率及产率、形貌、质量和缺陷程度的影响,简要介绍了电化学法制备功能化石墨烯材料及其应用,并指出电化学法制备石墨烯技术的未来发展方向是电解质体系设计、电解条件优化、剥离机理认识及电解池合理设计等。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高亚辉
尹国杰
张少文
王璐
孟巧静
李欣栋
关键词 石墨烯电化学电解质阳极氧化阴极插层    
Abstract:The exceptional electronic, thermal, optical and mechanical properties of graphene make it ideal for the next generation of electronic and optoelectronic devices. So, it is particularly important to research and develop high-quality, large-scale and low-cost technology of graphene preparation. Electrochemical exfoliation of graphite has emerged as a promising wet chemical approach with advantages such as scalability, solution processability and eco-friendliness. In this paper, research progress of preparation of graphene by electrochemical method was reviewed. The effects of anodic oxidation and cathodic intercalation of graphite on the yield, morphology, quality and defect level of graphene were emphatically described, and the exfoliation mechanisms of the two processes were briefly summarized. Moreover, the preparation and application of functionalized graphene by electrochemical approach were introduced. Finally, it was pointed out that the future development direction of electrochemical preparation of graphene is the design of electrolyte system, optimization of exfoliation conditions, understanding of the exfoliation mechanism, rational design of electrochemical cells.
Key wordsgraphene    electrochemistry    electrolytes    anodic oxidation    cathodic intercalation
收稿日期: 2019-07-26      出版日期: 2020-08-15
中图分类号:  TQ127.1+1  
通讯作者: 张少文(1964-),男,教授,博士,主要从事二维石墨烯材料和选择性分离复合材料研究,联系地址:河南省洛阳市洛龙区王城大道90号洛阳理工学院环境工程与化学学院(471023),E-mail:zhsw155@163.com     E-mail: zhsw155@163.com
引用本文:   
高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
GAO Ya-hui, YIN Guo-jie, ZHANG Shao-wen, WANG Lu, MENG Qiao-jing, LI Xin-dong. Research progress in electrochemical preparation of graphene. Journal of Materials Engineering, 2020, 48(8): 84-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000704      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/84
[1] 崔超婕,田佳瑞,杨周飞,等.石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程,2019,47(5):1-9. CUI C J, TIAN J R, YANG Z F, et al. Application prospect of graphene in Li-ion battery and supercapacitor[J]. Journal of Materials Engineering,2019, 47(5):1-9.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J].Science, 2004,306(5696):666-669.
[3] SONG N, JIA J, WANG W, et al. Green production of pristine graphene using fluid dynamic force in supercritical CO2[J]. Chemical Engineering Journal, 2016, 298(8):198-205.
[4] PATON K R, VARRLA E, BACKES C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials, 2014, 13(6):624-630.
[5] MARCANO D C, KOSYNKIN D V, BERLIN J M et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010,4(8):4806-4814.
[6] JOSHIA R K, ALWARAPPAN S, YOSHIMURA M, et al. Graphene oxide:the new membrane material[J]. Applied Materials Today, 2015,1(1):1-12.
[7] DESILVA K K H, HUANG H H, JOSHI R K, et al. Chemical reduction of graphene oxide using green reductants[J]. Carbon, 2017, 119(8):190-199.
[8] TALYZIN A V, MERCIER G, KLECHIKOV A, et al. Brodie vs Hummers graphite oxides for preparation of multi-layered materials[J]. Carbon, 2017, 115(5):430-440.
[9] ALAM S N, SHARMA N, KUMAR L. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)[J]. Graphene, 2017, 6(1):1-18.
[10] XIN H, ZHAO Q, CHEN D, et al. Roll-to-roll mechanical peeling for dry transfer of chemical vapor deposition graphene[J]. Journal of Micro and Nano-Manufacturing, 2018, 6(3):031004-031011.
[11] XIN H, LI W. A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene[J]. Applied Physics Reviews, 2018, 5(3):031105-031121.
[12] CHEN Z, QI Y, CHEN X, et al. Direct CVD growth of graphene on traditional glass:methods and mechanisms[J]. Advanced Materials, 2018, 31(9):1803639.
[13] SUN J, CHEN Z, YUAN L, et al. Direct-chemical-vapor-deposition-fabricated, large-scale graphene glass with high carrier mobility and uniformity for touch panel applications[J]. ACS Nano, 2016, 10(12):11136-11144.
[14] CHEN X, CHEN Z, JIANG W, et al. Fast growth and broad applications of 25-inch uniform graphene glass[J]. Advanced Materials, 2017, 29(1):1603428-1603434.
[15] CIESIELSKI A, SAMORÌ P. Graphene via sonication assisted liquid-phase exfoliation[J]. Chemical Society Reviews, 2014, 43(1):381-398.
[16] HAAR S, EL GEMAYEL M, SHIN Y, et al. Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-octylbenzene[J]. Scientific Reports, 2015, 5:16684-16693.
[17] DÖBBELIN M, CIESIELSKI A, HAAR S, et al. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites[J]. Nature Communications, 2016, 7(7):11090-11099.
[18] SÉBASTIEN H, ARTUR C, JOSEPH C, et al. A supramolecular strategy to leverage the liquid-phase exfoliation of graphene in the presence of surfactants:unraveling the role of the length of fatty acids[J]. Small, 2015, 11(14):1691-1702.
[19] CONTI S, DEL ROSSO M G, CIESIELSKI A, et al. Perchlorination of coronene enhances its propensity for self assembly on graphene[J]. ChemPhysChem, 2016, 17(3):352-357.
[20] ARTUR C, SéBASTIEN H, MIRELLA E G, et al. Harnessing the liquid-phase exfoliation of graphene using aliphatic compounds:a supramolecular approach[J]. Angewandte Chemie International Edition, 2014, 53(39):10355-10361.
[21] 王晨,燕绍九,南文争,等.高浓度石墨烯水分散液的制备与表征[J]. 材料工程,2019,47(4):56-63. WANG C, YAN S J, NAN W Z, et al. Preparation and characterization of high concentration graphene aqueous dispersion[J]. Journal of Materials Engineering, 2019,47(4):56-63.
[22] YANG S, ZHANG P, NIA A S, et al. Emerging 2D materials produced via electrochemistry[J]. Advanced Materials, 2020, 32(10):1907857.
[23] AMBROSI A, PUMERA M. Exfoliation of layered materials using electrochemistry[J]. Chemical Society Reviews, 2018,47:7213-7224.
[24] 平蕴杰, 龚佑宁, 潘春旭. 电化学剥离制备石墨烯及其光电特性研究进展[J].中国激光, 2017, 44(7):98-113. PING Y J, GONG Y N, PAN C X. Research progress in preparation of graphene from electrochemical exfoliation and its optoelectronic characteristics[J]. Chinese Journal of Lasers 2017, 44(7):98-113.
[25] KURYS Y I, USTAVYTSKA O O, KOSHECHKO V G, et al. Structure and electrochemical properties of multilayer graphene prepared by electrochemical exfoliation of graphite in the presence of benzoate ions[J]. RSC Advances, 2016, 6(42):36050-36057.
[26] ABDELKADER A M, COOPER A J, DRYFE R A, et al. How to get between the sheets:a review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite[J]. Nanoscale, 2015, 7(16):6944-6956.
[27] SINGH R, CHARU TRIPATHI C. Synthesis of colloidal graphene by electrochemical exfoliation of graphite in lithium sulphate[J]. Materials Today:Proceedings, 2018,5(1):973-979.
[28] YU P, SIMON G, ZHONG Y. Electrochemical exfoliation of graphite and production of functional graphene[J]. Current Opinion in Colloid & Interface Science, 2015, 20(5/6):329-338.
[29] 刘琳,李莹, 鄂涛, 等. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8):97-102. LIU L, LI Y, E T, et al. Synthesis and electrical conductivity of spherical nano-TiO2/graphene composites[J]. Journal of Materials Engineering, 2019, 47(8):97-102.
[30] SU C Y, LU A Y, XU Y, et al. High-quality thin graphene films from fast electrochemical exfoliation[J]. ACS Nano, 2011, 5(3):2332-2339.
[31] PARVEZ K, LI R, PUNIREDD S R, et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics[J]. ACS Nano, 2013, 7(4):3598-3606.
[32] PARVEZ K, WU Z S, LI R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. Journal of the American Chemical Society, 2014, 136(16):6083-6091.
[33] SONG Y, XU J L, LIU X X. Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode[J].Journal of Power Sources, 2014,249(1):48-58.
[34] ZHANG Y, XU Y L, ZHU J B, et al. Electrochemically exfoliated high-yield graphene in ambient temperature molten salts and its application for flexible solid-state supercapacitors[J]. Carbon, 2018, 127(2):392-403.
[35] AMBROSI A, PUMERA M. Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications[J]. Chemistry-A European Journal, 2016, 22(1):153-159.
[36] HAMRA A A B, LIM H N, CHEE W K, et al. Electro-exfoliating graphene from graphite for direct fabrication of supercapacitor[J]. Applied Surface Science, 2016, 360(1):213-223.
[37] RADON A, W?ODARCZYK P, ?UKOWIEC D. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite[J]. Physica E, 2018,99:82-90.
[38] CHEN C H, YANG S W, CHUANG M C, et al. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation[J]. Nanoscale, 2015, 7(37):15362-15373.
[39] RAO K S,SENTHILNATHAN J,LIU Y F,et al. Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite[J]. Scientific Reports, 2014, 4(6174):1032-1035.
[40] TRIPATHI P, PRAKASHPATEL C R, DIXIT A, et al. High yield synthesis of electrolyte heating assisted electrochemically exfoliated graphene for electromagnetic interference shielding applications[J]. RSC Advances, 2015, 5(25):19074-19081.
[41] LIU Z, LIU J Z, YAO C, et al. Interlayer binding energy of graphite:a mesoscopic determination from deformation[J]. Physical Review B, 2012, 85(20):205418-23.
[42] COROS M, POGACEAN F, ROSU M C, et al. Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods[J]. RSC Advances, 2016, 6(4):2651-2661.
[43] KUMAR M K P, SHANTHINI S, SRIVASTAVA S. Electrochemical exfoliation of graphite for producing graphene using saccharin[J]. RSC Advances, 2015, 5(66):53865-53869.
[44] YANG S, LOHE M R, MVLLEN KLAUS, et al. New-generation graphene from electrochemical approaches:production and applications[J]. Advanced Materials, 2016, 28(29):6213-6221.
[45] 钟轶良.电化学剥离制备石墨烯及其石墨烯用作燃料电池催化剂载体的研究[D].广州:华南理工大学,2013. ZHONG Y L. Investigation for the preparation of graphene with electrochemical exfoliation and the application of graphene as support for fuel cell catalyst[D].Guangzhou:South China University of Technology,2013.
[46] TANG H, HE P, HUANG T, et al. Electrochemical method for large size and few-layered water-dispersible graphene[J]. Carbon, 2019,143(3):559-563.
[47] WANG H S, TIAN S Y, YANG S W, et al. Anode coverage for enhanced electrochemical oxidation:a green and efficient strategy towards water-dispersible graphene[J]. Green Chemistry, 2018, 20(6):1306-1315.
[48] YANG S, BRVLLER S, WU Z S, et al. Organic radical assisted electrochemical exfoliation for the scalable production of high-quality graphene[J]. Journal of the American Chemical Society, 2015,137(43):13927-13932.
[49] HOSSAIN S T, WANG R. Electrochemical exfoliation of graphite:effect of temperature and hydrogen peroxide addition[J]. Electrochimica Acta, 2016,216(10):253-260.
[50] RAO K S, SENTILNATHAN J, CHO H W, et al. Soft processing of graphene nanosheets by glycinebisulfate ionic-complex-assisted electrochemical exfoliation of graphite for reduction catalysis[J]. Advanced Functional Materials, 2015,25(2):298-305.
[51] TIAN S, YANG S, HUANG T, et al. One-step fast electrochemical fabrication of water-dispersible graphene[J]. Carbon, 2017, 111(1):617-621.
[52] HSIEH C T, HSUEH J H. Electrochemical exfoliation of graphene sheets from a natural graphite flask in the presence of sulfate ions at different temperatures[J]. RSC Advances, 2016,6(69):64826-6483.
[53] HSIEH C T, YANG B H, CHEN Y F. Dye-sensitized solar cells equipped with graphene-based counter electrodes with different oxidation levels[J]. Diamond & Related Materials, 2012, 27/28(7):68-75.
[54] HSIEH C T, YANG B H, LIN J Y. One-and two-dimensional carbon nanomaterials as counter electrodes for dye-sensitized solar cells[J]. Carbon, 2011, 49(9):3092-3097.
[55] CHUANG C H, SU C Y, HSU K T, et al.A green, simple and cost-effective approach to synthesize high quality graphene by electrochemical exfoliation via process optimization[J]. RSC Advances, 2015, 5(67):54762-54768.
[56] LI Y F, CHEN S M, LAI W H, et al. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation[J]. Journal of Chemical Physics, 2013, 139(6):064703-064714.
[57] PARVEEN N, ANSARI M O, CHO M H. Simple route for gram synthesis of less defective few layered graphene and its electrochemical performance[J]. RSC Advances, 2015, 5(56):44920-44927.
[58] SAHOO S K, MALLIK A. Simple, fast and cost-effective electrochemical synthesis of few layer graphene nanosheets[J]. Nano, 2015,10(2):1550019-1550029.
[59] SAHOO S K, MALLIK A. Synthesis and characterization of conductive few layered graphene nanosheets using an anionic electrochemical intercalation and exfoliation technique[J]. Journal of Materials Chemistry, 2015, 3(41):10870-10878.
[60] GURZEDA B, FLORCZAK P, KEMPINSKI M, et al. Synthesis of graphite oxide by electrochemical oxidation in aqueous perchloric acid[J]. Carbon, 2016,100(1):540-545.
[61] PEI S, WEI Q, HUANG K, et al. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation[J]. Nat Commun, 2018, 9(1):145-154.
[62] 裴嵩峰,任文才,黄坤等.一种连续化制备氧化石墨烯微片的方法:ZL201610167450.9[P].2019-05-10. PEI S F, REN W C, HUANG K, et al. A method for continuous preparation of graphene oxide microchips:ZL201610167450.9[P].2019-05-10.
[63] JUNG S M, MAFRA D L, LIN C T, et al. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance[J]. Nanoscale, 2015, 7(10):4386-4393.
[64] WEI W, WANG G, YANG S, et al. Efficient coupling of nanoparticles to electrochemically exfoliated graphene[J]. Journal of the American Chemical Society, 2015, 137(16):5576-5581.
[65] LIU Z, ZHANG H, EREDIA M, et al. Water-dispersed high-quality graphene:a green solution for efficient energy storage applications[J]. ACS Nano,2019, 13(8):9431-9441.
[66] LIU Z, PARVEZ K, LI R, et al. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors[J]. Advanced Materials, 2015, 27(4):669-675.
[67] MUKHERJEE M D, DHAND C, DWIVEDI N, et al. Facile synthesis of 2-dimensional transparent graphene flakes for nucleic acid detection[J]. Sensors and Actuators B:Chemical, 2015, 210(4):281-289.
[68] WANG J, MANGA K K, BAO Q,et al. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J]. Journal of the American Chemical Society, 2011,133(23):8888-8891.
[69] XIA Z Y, GIAMBASTIANI G, CHRISTODOULOU C, et al. Synergic exfoliation of graphene with organic molecules and inorganic ions for the electrochemical production of flexible electrodes[J]. Chem Plus Chem, 2014, 79(3):439-446.
[70] ZHOU M, TANG J, CHENG Q,et al. Few-layer graphene obtained by electrochemical exfoliation of graphite cathode[J]. Chemical Physics Letters, 2013,572(5):61-65.
[71] YANG Y, JI X, YANG X, et al. Electrochemically triggered graphene sheets through cathodic exfoliation for lithium ion batteries anodes[J]. RSC Advances, 2013,3(36):16130-16135.
[72] LEROUX Y R, BERGAMINI J F, ABABOU S, et al. Synthesis of functionalized few-layer grapheme through fast electrochemical expansion of graphite[J]. Journal of Electroanalytical Chemistry, 2015,753(9):42-46.
[73] ZOU Y, WANG Y. Interconnecting carbon fibers with the in situ electrochemically exfoliated graphene as advanced binder-free electrode materials for flexible supercapacitor[J]. Scientific Reports, 2015, 5(7):11792-11798.
[74] GARCÍA-DALÍ S, PAREDES J I, MUNUERA J M. An aqueous cathodic delamination route towards high quality graphene flakes for oil sorption and electrochemical charge storage applications[J]. Chemical Engineering Journal, 2019,372(9):226-1239.
[75] COOPER A J, WILSON N R, KINLOCH I A, et al. Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations[J]. Carbon, 2014, 66(3):340-350.
[76] LU J, YANG J X, WANG J Z, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano,2009,3(8):2367-2375.
[77] MAO M, WANG M, HU J, et al. Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids[J]. Chemical Communications, 2013, 49(46):5301-5303.
[78] NAJAFABADI A T, GYENGE E. High-yield graphene production by electrochemical exfoliation of graphite:novel ionic liquid (IL)-acetonitrile electrolyte with low IL content[J]. Carbon, 2014, 71(5):58-69.
[79] LIU F, WANG C J, SUI X, et al. Synthesis of graphene materials by electrochemical exfoliation:recent progress and future potential[J].Carbon Energy, 2019,2(9):1-27.
[80] WANG S, ZHANG Y, ABIDI N, et al. Wettability and surface free energy of graphene films[J]. Langmuir, 2009, 25(18):11078-11081.
[81] ABDELKADER A M, KINLOCH I A, DRYFE R. Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents[J]. ACS Applied Materials & Interfaces, 2014, 6(3):1632-1639.
[82] HUANG H, XIA Y,TAO X, et al. Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation-expansion-microexplosion mechanism[J]. Journal of Materials Chemistry, 2012, 22(21):10452-10456.
[83] ZHANG W, ZENG Y, XIAO N, et al. One-step electrochemical preparation of graphene-based heterostructures for Li storage[J]. Journal of Materials Chemistry, 2012, 22(17):8455-8461.
[84] GEE C M, TSENG C C, WU F Y, et al. Flexible transparent electrodes made of electrochemically exfoliated graphene sheets from low-cost graphite pieces[J].Displays,2013,34(4):315-319.
[85] RYU S H, KIM S, KIM H, et al. Highly conductive polymer composites incorporated with electrochemically exfoliated graphene fillers[J]. RSC Advances, 2015, 5(46):36456-36460.
[86] SHINDE D, BRENKER J, EASTON C D, et al. Shear assisted electrochemical exfoliation of graphite to graphene[J]. Langmuir 2016, 32(14):3552-3559.
[87] AFKHAM M, ANUPAM S. Bilayer-rich graphene suspension from electrochemical exfoliation of graphite[J]. Materials & Design, 2018,156(6):62-70.
[88] AFKHAM M, SINGH D K, ANUPAM S. Size distribution of trilayer graphene flakes obtained by electrochemical exfoliation of graphite:effect of the synthesis parameters[J]. Materials Chemistry and Physics, 2018, 220(12):87-97.
[89] BAKHSHANDEH R, SHAFIEKHANI A. Ultrasonic waves and temperature effects on graphene structure fabricated by electrochemical exfoliation method[J]. Materials Chemistry and Physics, 2018, 212(6):95-102.
[90] CHEN C W, LIU Z T, ZHANG Y Z, et al. Sonoelectrochemical intercalation and exfoliation for the preparation of defective graphene sheets and their application as nonenzymatic H2O2 sensors and oxygen reduction catalysts[J]. RSC Advances, 2015, 5(28):21988-21998.
[91] THANH D V, OANH P T, HUONG D T, et al. Ultrasonic-assisted cathodic electrochemical discharge for graphene synthesis[J].Ultrasonics Sonochemistry,2017,34(1):978-983.
[92] WU L, LI W, LI P, et al. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite[J]. Small, 2014, 10(7):1421-1429.
[93] MARKOVIC Z M, BUDIMIR M D, KEPIC D P, et al. Semi-transparent, conductive thin films of electrochemical exfoliated graphene[J]. RSC Advances, 2016, 6(45):39275-39283.
[94] LIU J, YANG H, ZHEN S G, et al. A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core[J]. RSC Advances, 2013, 3(29):11745-11750.
[95] LIU J, POH C K, ZHAN D, et al. Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod[J]. Nano Energy, 2013, 2(3):377-386.
[96] ZHANG Y, XU Y. Simultaneous Electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene[J]. Advanced Functional Materials, 2019, 29(37):1902171-1902185.
[97] ACHEE T C, SUN W M, HOPE J T, et al. High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation[J]. Scientific Reports, 2018, 8(1):14525-14533.
[98] KUILA T, KHANRA P, KIM N H, et al. Effects of sodium hydroxide on the yield and electrochemical performance of sulfonated poly (ether-ether-ketone) functionalized graphene[J]. Journal of Materials Chemistry:A, 2013, 1(32):9294-9302.
[99] OUHIB F, AQIL A, THOMASSIN J M, et al. A facile and fast electrochemical route to produce functional few-layer graphene sheets for lithium battery anode application[J]. Journal of Materials Chemistry:A, 2014, 2(37):15298-15302.
[100] ZHANG L, HUANG H, YIN H, et al. Sulfur synchronously electrodeposited onto exfoliated graphene sheets as a cathode material for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry:A, 2015, 3(32):16513-16519.
[101] GU S Y, HSIEH C T,YUAN J Y, et al. Amino-functionalization of graphene nanosheets by electrochemical exfoliation technique[J].Diamond and Related Materials,2018,87(5):99-106.
[102] YANG Y, SHI W, ZHANG R, et al. Electrochemical exfoliation of graphite into nitrogen-doped graphene in glycine solution and its energy storage properties[J]. Electrochimica Acta, 2016, 204(6):100-107.
[103] LU A K, LI H Y, YU Y. Holey graphene synthesized by electrochemical exfoliation for high-performance flexible microsupercapacitors[J]. Journal of Materials Chemistry:A, 2019, 7(13):7852-7858.
[104] ZHOU F, HUANG H, XIAO C, et al. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors[J]. Journal of the American Chemical Society, 2018, 140(26):8198-8205.
[105] XIA Z Y, PEZZINI S, TREOSSI E, et al. The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques:a nanoscale study[J]. Advanced Functional Materials, 2013, 23(37):4684-4693.
[106] MUNUERA J M, PAREDES J I, VILLAR-RODIL S, et al. High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types[J]. Carbon, 2015, 94(11):729-739.
[107] HOFMANN M, CHIANG W Y, NGUY N D T, et al. Controlling the properties of graphene produced by electrochemical exfoliation[J]. Nanotechnology, 2015, 26(33):335607.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[5] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[6] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[7] 齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九. 人造固态电解质界面在锂金属负极保护中的应用研究[J]. 材料工程, 2020, 48(6): 50-61.
[8] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[9] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[10] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[11] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[12] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[13] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[14] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[15] 林梦晓, 张杰, 蒋全通, 李佳润, 路东柱, 侯保荣, 孙园园. 海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响[J]. 材料工程, 2020, 48(1): 98-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn