Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 132-137    DOI: 10.11868/j.issn.1001-4381.2019.000716
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响
甄睿1,2, 方信贤1,2, 皮锦红1,2, 许恒源1, 吴震1
1. 南京工程学院 材料科学与工程学院, 南京 211167;
2. 江苏省先进结构材料与应用技术重点实验室, 南京 211167
Effect of heat treatment on microstructure and mechanical properties of Mg97.5Gd1.9Zn0.6 alloy
ZHEN Rui1,2, FANG Xin-xian1,2, PI Jin-hong1,2, XU Heng-yuan1, WU Zhen1
1. School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China
全文: PDF(2697 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用OM,SEM,TEM和电子万能试验机系统地研究了Mg97.5Gd1.9Zn0.6合金在铸态、退火态、挤压态和挤压后直接时效(T5)的组织演化和力学性能。结果表明,合金的铸态组织由α-Mg、共晶形貌的(Mg,Zn)3Gd相和层片状的14H-LPSO相组成。在510℃均匀化退火过程中,发生了(Mg,Zn)3Gd转化成块状14H-LPSO的相变。根据生成相的形貌和发生反应的热力学条件得知其为包析转变,即(Mg,Zn)3Gd+α-Mg→14H-LPSO。挤压后直接时效(T5)处理过程中,发生了晶内14H-LPSO相和β'相的沉淀析出。在14H-LPSO强韧化与沉淀强化的共同作用下,合金的屈服强度和抗拉强度分别为216 MPa和361 MPa,伸长率也保持在较好的水平,为6.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甄睿
方信贤
皮锦红
许恒源
吴震
关键词 镁合金长周期结构热挤压时效处理相变    
Abstract:A ternary alloy strengthened by the phase with long period stacking ordered (LPSO) structure with composition of Mg97.5Gd1.9Zn0.6 (atom fraction/%) was prepared by conventional permanent mold casting. The microstructure evolution and mechanical properties in as-cast, as-annealed, as-extruded and extruded-T5 alloy were systematically investigated by OM,SEM,TEM and electronic universal testing machine. The results show that the as-cast microstructure of the alloy consists of the α-Mg matrix, (Mg,Zn)3Gd eutectic and lamellar 14H-LPSO phase. Annealing at 510℃ results in the transformation of (Mg,Zn)3Gd into the block-shaped 14H-LPSO phase. According to the distribution and morphology of the 14H-LPSO phase observed in the microstructure after annealing, the peritectoid transformation (Mg,Zn)3Gd +α-Mg→14H-LPSO possibly occurs during annealing. The lamellar 14H-LPSO and β' p precipitates have also been observed in the alloy during extruded-T5 treatment. Under the combined action of 14H-LPSO toughening and precipitation strengthening, the aged sample shows the best tensile properties at room temperature:ultimate tensile strength of 361 MPa, yield strength of 216 MPa and elongation of 6.9%.
Key wordsmagnesium alloy    long period stacking ordered structures (LPSO)    hot extrusion    aging treatment    phase transformation
收稿日期: 2019-07-31      出版日期: 2020-09-17
中图分类号:  TG146.2+2  
通讯作者: 甄睿(1978-),女,副教授,博士,主要研究方向为高性能镁合金的组织与性能,联系地址:南京工程学院材料科学与工程学院(211167),E-mail:zhenr@njit.edu.cn     E-mail: zhenr@njit.edu.cn
引用本文:   
甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
ZHEN Rui, FANG Xin-xian, PI Jin-hong, XU Heng-yuan, WU Zhen. Effect of heat treatment on microstructure and mechanical properties of Mg97.5Gd1.9Zn0.6 alloy. Journal of Materials Engineering, 2020, 48(9): 132-137.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000716      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/132
[1] LI J C, HE Z L, FUN P H, et al. Heat treatment and mechanical properties of a high-strength cast Mg-Gd-Zn alloy[J]. Materials Science and Engineering:A, 2016, 651:745-752.
[2] RONG W, ZHANG Y, WU Y, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloys via differential-thermal extrusion[J]. Materials Characterization, 2017, 131:380-387.
[3] WU X, PAN F, CHENG R, et al. Effect of morphology of long period stacking ordered phase on mechanical properties of Mg-10Gd-1Zn-0.5Zr magnesium alloy[J]. Materials Science and Engineering:A, 2018, 726:64-68.
[4] RONG W, ZHANG Y, WU Y J, et al. The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg-Gd-Zn-Zr alloys[J]. Materials Science and Engineering:A, 2019, 740/741:262-273.
[5] XU C, ZHENG M Y, WU K, et al. Effect of ageing treatment on the precipitation behaviour of Mg-Gd-Y-Zn-Zr alloy[J]. Journal of Alloys and Compounds, 2013, 550:50-56.
[6] LU R P, WANG J F, CHEN Y L, et al. Effects of heat treatment on the morphology of long-period stacking ordered phase, the corresponding damping capacities and mechanical properties of Mg-Zn-Y alloys[J]. Journal of Alloys and Compounds, 2015, 639:541-546.
[7] AMIYA K, OHSUNA T, INOUE A. Long-period hexagonal structures in melt-spun Mg97Ln2Zn1 (Ln=lanthanide metal) alloys[J]. Materials Transactions, 2003, 44(10):2151-2156.
[8] YAMASAKI M, ANAN T, YOSHIMOTO S, et al. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate[J]. Scripta Materialia, 2005, 53(7):799-803.
[9] YAMASAKI M, SASAKI M, NISHIJIMA M, et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J]. Acta Materialia, 2007,55(20):6798-6805.
[10] WU X, PAN F S, CHENG R J, et al. Formation of long period stacking ordered phases in Mg-10Gd-1Zn-0.5Zr (wt.%) alloy[J]. Materials Characterization,2019, 147:50-56.
[11] WU Y J, LIN D L, ZENG X Q, et al. Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg-Gd-Zn-Zr alloy[J]. Journal of Materials Science, 2009,44(6):1607-1612.
[12] ZHEN R, SUN Y, XUE F, et al. Effect of heat treatment on the microstructures and mechanical properties of the extruded Mg-11Gd-1Zn alloy[J]. Journal of Alloys and Compounds, 2013,550:273-278.
[13] 孟姣,薛烽,孙晶晶,等.Zn含量双Mg-Gd-Zn合金显微组织与力学性能的影响[J].稀有金属材料与工程,2015,44(10):2429-2434. MENG J,XUE F, SUN J J,et al.Effects of Zn addition on the microstructure and mechanical properties of Mg-Gd-Zn alloys[J].Rare Metal Materials and Egineering,2015,44(10):2429-2434.
[14] ZHAO Q, WU Y, RONG W, et al. Effect of applied pressure on microstructures of squeeze cast Mg-15Gd-1Zn-0.4Zr alloy[J].Journal of Magnesium and Alloys, 2018, 6:197-204.
[15] KAWAMURA Y, YAMASAKI M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure[J]. Materials Transactions, 2007, 48(11):2986-2992.
[16] WU Y J, ZENG X Q, LIN D L, et al. The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773K[J]. Journal of Alloys and Compounds, 2009, 477(1/2):193-197.
[17] WEN K, LIU K, WANG Z, et al. Effect of pre-solution treatment on mechanical properties of as-extruded Mg96.9Zn0.43Gd2.48Zr0.15 alloy[J]. Materials Science and Engineering:A, 2016, 674:33-39.
[18] SAADATIA M, KHOSROSHAHIA R A, EBRAHIMIB G, et al. Formation of precipitates in parallel arrays on LPSO structures during hot deformation of GZ41K magnesium alloy[J]. Materials Characterization, 2017, 131:234-243.
[19] LI Y, XIAO W, WANG F, et al. The roles of long period stacking ordered structure and Zn solute in the hot deformation behavior of Mg-Gd-Zn alloys[J]. Journal of Alloys and Compounds, 2018, 745:33-43.
[20] ZHU Y M, MORTON A J, NIE J F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Materialia, 2010, 58(8):2936-2947.
[21] HAGIHARA K, YOKOTANI N, UMAKOSHI Y. Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure[J]. Intermetallics, 2010,18(2):267-276.
[22] HAGIHARA K, KINOSHITA A, SUGINO Y, et al. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy[J]. Acta Materialia, 2010,58(19):6282-6293.
[23] ZHANG S, LIU W, GU X, et al. Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg-14Gd-3Y-1.8Zn-0.5Zr alloy[J]. Journal of Alloys and Compounds, 2013, 557:91-97.
[24] WANG J, SONG P, HUANG S, et al. Effects of heat treatment on the morphology of long-period stacking ordered phase and the corresponding mechanical properties of Mg-9Gd-xEr-1.6Zn-0.6Zr magnesium alloys[J]. Materials Science and Engineering:A, 2013, 563:36-45.
[1] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[2] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[3] 杨泽南, 李赛, 于俊杰, 谢强, 王祯, 张明达, 董浩凯, 张强, 杨志刚. 合金元素配分对珠光体相变热动力学及其奥氏体化影响的研究进展[J]. 材料工程, 2020, 48(7): 61-71.
[4] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[5] 吴胜财, 罗弦, 龙永富, 张露, 徐本军, 黄润. 二氧化硅掺杂对二氧化钛晶型转变机理的影响[J]. 材料工程, 2020, 48(11): 99-107.
[6] 宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
[7] 万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
[8] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[9] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[10] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[11] 陈颖, 姜庆辉, 辛集武, 李鑫, 孙兵杨, 杨君友. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10.
[12] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[13] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[14] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
[15] 魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn