High energy density supercapacitors: electrode material,electrolyte and energy density limitation principle
ZHENG Jun-sheng1,2, QIN Nan1,2, GUO Xin1,2, JIN Li-ming1,2, P Zheng2,3
1. Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China;
2. School of Automotive Studies, Tongji University, Shanghai 201804, China;
3. Florida State University, Florida 32310, USA
Abstract:Supercapacitors are power-type energy storage devices with high power density and long cycle life. However, the low energy density limits wider applications. In this paper, the working principle of supercapacitors was first introduced, and the characteristics of electrode materials needed and current progress were summarized. Then, the characteristics and related progress of aqueous, organic and ionic liquid electrolytes were introduced. Finally, the principle and the factors of energy density limitation of supercapacitors were pointed out, and the improvement methods were discussed from the aspects of electrode materials, electrolytes and the structure of supercapacitors, respectively.
郑俊生, 秦楠, 郭鑫, 金黎明, Zheng Jim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
ZHENG Jun-sheng, QIN Nan, GUO Xin, JIN Li-ming, P Zheng. High energy density supercapacitors: electrode material,electrolyte and energy density limitation principle. Journal of Materials Engineering, 2020, 48(9): 47-58.
[1] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008,7(11):845-854.
[2] WANG Y, SONG Y, XIA Y. Electrochemical capacitors:mechanism, materials, systems, characterization and applications[J]. Chem Soc Rev, 2016, 45(21):5925-5950.
[3] HELMHOLTZ H. Studien über electrische Grenzschichten[J]. Annalen der Physik, 1879, 243(7):337-382.
[4] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38(9):2520-2531.
[5] BEGUIN F, PRESSER V, BALDUCCI A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials, 2014, 26(14):2219-2251,2283.
[6] CHAPMAN D L. A contribution to the theory of electrocapillarity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2010, 25(148):475-481.
[7] GOUY M. Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. J Phys Theor Appl, 1910, 9(1):457-468.
[8] STERN O. Zur theorie der elektrolytischen doppelschicht[J]. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 1924, 30(21/22):508-516.
[9] HUANG J, SUMPTER B G, MEUNIER V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry, 2008, 14(22):6614-6626.
[10] ZHONG C, DENG Y, HU W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21):7484-7539.
[11] CONWAY B E, BIRSS V, WOJTOWICZ J. The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. Journal of Power Sources, 1997, 66(1):1-14.
[12] JIANG Y, LIU J. Definitions of pseudocapacitive materials:a brief review[J]. Energy & Environmental Materials, 2019, 2(1):30-37.
[13] AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy and Environmental Science, 2014, 7(5):1597-1614.
[14] LI H B, YU M H, WANG F X, et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials[J]. Nature Communications, 2013, 4:1-7.
[15] HERRERO E, BULLER L J, ABRUÑA H D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials[J]. Chemical Reviews, 2001, 101(7):1897-1930.
[16] NAOI K, ISHIMOTO S, MIYAMOTO J, et al. Second generation ‘nanohybrid supercapacitor’:evolution of capacitive energy storage devices[J]. Energy & Environmental Science, 2012, 5(11):9363.
[17] JIN L, GONG R, ZHANG W, et al. Toward high energy-density and long cycling-lifespan lithium ion capacitors:a 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode[J]. Journal of Materials Chemistry:A, 2019, 7(14):8234-8244.
[18] JIN L, GONG R, ZHENG J, et al. Fabrication of dual-modified carbon network enabling improved electronic and ionic conductivities for fast and durable Li2TiSiO5 anodes[J]. Chem Electro Chem, 2019, 6:3020-3029.
[19] LIU H J, WANG J, WANG C X, et al. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor[J]. Advanced Energy Materials, 2011, 1(6):1101-1108.
[20] PRESSER V, ZHANG L, NIU J J, et al. Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability[J]. Advanced Energy Materials, 2011, 1(3):423-430.
[21] ZHOU H, ZHU S, HIBINO M, et al. Electrochemical capacitance of self-ordered mesoporous carbon[J]. Journal of Power Sources, 2003, 122(2):219-223.
[22] YOSHIDA N, HIROTA Y, UCHIDA Y, et al. Solvent-free synthesis and KOH activation of mesoporous carbons using resorcinol/Pluronic F127/hexamethylenetetramine mixture and their application to EDLC[J]. Microporous and Mesoporous Materials, 2018, 272:217-221.
[23] YANG I, KIM S G, KWON S H, et al. Pore size-controlled carbon aerogels for EDLC electrodes in organic electrolytes[J]. Current Applied Physics, 2016, 16(6):665-672.
[24] POHLMANN S, RAMIREZ-CASTRO C, BALDUCCI A. The influence of conductive salt ion selection on EDLC electrolyte characteristics and carbon-electrolyte interaction[J]. Journal of the Electrochemical Society, 2015, 162(5):A5020-A5030.
[25] URITA K, URITA C, FUJITA K, et al. The ideal porous structure of EDLC carbon electrodes with extremely high capacitance[J]. Nanoscale, 2017, 9(40):15643-15649.
[26] CONWAY B E. Electrochemical supercapacitors:scientific fundamentals and technological applications[M]. New York:Kluwer Acadamicl/Plenum Publisher, 1999.
[27] HSU Y H, LAI C C, HO C L, et al. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors[J]. Electrochimica Acta, 2014, 12(7):369-376.
[28] FRACKOWIAK E, GAUTIER S, GAUCHER H, et al. Electrochemical storage of lithium in multiwalled carbon nanotubes[J]. Carbon, 1999, 37(1):61-69.
[29] FRACKOWIAK E, DELPEUX S, JUREWICZ K, et al. Enhanced capacitance of carbon nanotubes through chemical activation[J]. Chemical Physics Letters, 2002, 361(1):35-41.
[30] FUTABA D N, HATA K, YAMADA T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 2006, 5(12):987-994.
[31] CHANG L, STACCHIOLA D J, HU Y H. An ideal electrode material, 3D surface-microporous graphene for supercapacitors with ultrahigh areal capacitance[J]. ACS Appl Mater Interfaces, 2017, 9(29):24655-24661.
[32] YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017, 27(30):1701264.
[33] YANG X, WU D, CHEN X, et al. Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application[J]. Journal of Physical Chemistry:C, 2010, 114(18):8581-8586.
[34] GOPALAKRISHNAN M, SRIKESH G, MOHAN A, et al. In situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications[J]. Applied Surface Science, 2017, 40(3):578-583.
[35] ZHENG J P, CYGAN P J, JOW T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1995, 142(8):2699-2703.
[36] KRAUSE P P T, CAMUKA H, LEICHTWEISS T, et al. Temperature-induced transformation of electrochemically formed hydrous RuO2 layers over Ru(0001) model electrodes[J]. Nanoscale, 2016, 8(29):13944-13953.
[37] MAJUMDAR D. An overview on ruthenium oxide composites-challenging material for energy storage applications[J]. Material Science Research India, 2018, 15(1):30-40.
[38] MAJUMDAR D, MAIYALAGAN T, JIANG Z. Recent progress in ruthenium oxide-based composites for supercapacitor applications[J]. Chem Electro Chem, 2019,6(17):4343-4372.
[39] LEE H Y, GOODENOUGH J B. Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry, 1999, 144(1):220-223.
[40] ZHU Q, LIU K, ZHOU J, et al. Design of a unique 3D-nanostructure to make MnO2 work as supercapacitor material in acid environment[J]. Chemical Engineering Journal, 2017, 321:554-563.
[41] YU N, YIN H, ZHANG W, et al. High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics[J]. Advanced Energy Materials, 2016, 6(2):1-9.
[42] GUO W, YU C, LI S, et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors:challenges and perspectives[J]. Nano Energy, 2019, 57:459-472.
[43] DONG L, LIANG G, XU C, et al. Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability[J]. Journal of Materials Chemistry:A, 2017, 5(37):19934-19942.
[44] MA Y, HOU C, ZHANG H, et al. Morphology-dependent electrochemical supercapacitors in multi-dimensional polyaniline nanostructures[J]. Journal of Materials Chemistry:A, 2017, 5(27):14041-14052.
[45] ZANG L, LIU Q, QIU J, et al. Design and fabrication of an all-solid-state polymer supercapacitor with highly mechanical flexibility based on polypyrrole hydrogel[J]. ACS Appl Mater Interfaces, 2017, 9(39):33941-33947.
[46] HERRMANN S, AYDEMIR N, NÄGELE F, et al. Enhanced capacitive energy storage in polyoxometalate-doped polypyrrole[J]. Advanced Functional Materials, 2017, 27(25):1700881.
[47] AMBADE R B, AMBADE S B, SHRESTHA N K, et al. Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications[J]. Journal of Materials Chemistry:A, 2017, 5(1):172-180.
[48] YI Z, BETTINI L G, TOMASELLO G, et al. Flexible conducting polymer transistors with supercapacitor function[J]. Journal of Polymer Science Part B, 2017, 55(1):96-103.
[49] YU M, LIN D, FENG H, et al. Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge[J]. Angewandte Chemie International Edition, 2017, 56(20):5454-5459.
[50] NAOI K. ‘Nanohybrid capacitor’:the next generation electrochemical capacitors[J]. Fuel Cells, 2010, 10(5):825-833.
[51] UE M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone[J]. Journal of the Electrochemical Society, 1994, 141(12):3336-3342.
[52] XU K, DING M S, JOW T R. Quaternary onium salts as nonaqueous electrolytes for electrochemical capacitors[J]. Journal of the Electrochemical Society, 2001, 148(3):A267-A274.
[53] ISHIMOTO S, ASAKAWA Y, SHINYA M, et al. Degradation responses of activated-carbon-based EDLCs for higher voltage operation and their factors[J]. Journal of the Electrochemical Society, 2009, 156(7):A563.
[54] MASTRAGOSTINO M, SOAVI F. Strategies for high-performance supercapacitors for HEV[J]. Journal of Power Sources, 2007, 174(1):89-93.
[55] WEINGARTH D, NOH H, FOELSKE-SCHMITZ A, et al. A reliable determination method of stability limits for electrochemical double layer capacitors[J]. Electrochimica Acta, 2013, 103:119-124.
[56] NANBU N, EBINA T, UNO H, et al. Physical and electrochemical properties of quaternary ammonium bis(oxalato)borates and their application to electric double-layer capacitors[J]. Electrochimica Acta, 2006, 52(4):1763-1770.
[57] ZHENG J P, HUANG J, JOW T R. The limitations of energy density for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1997, 144(6):2026-2031.
[58] NOKED M, AVRAHAM E, BOHADANA Y, et al. Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition[J]. Journal of Physical Chemistry:C, 2009, 113(17):7316-7321.
[59] LI X, WANG Z, GUO L, et al. Manganese oxide/hierarchical porous carbon nanocomposite from oily sludge for high-performance asymmetric supercapacitors[J]. Electrochimica Acta, 2018, 265:71-77.
[60] LI Y, YU N, YAN P, et al. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors[J]. Journal of Power Sources, 2015, 300:309-317.
[61] AHUJA P, UJJAIN S K, KANOJIA R. Electrochemical behaviour of manganese & ruthenium mixed oxide@reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor[J]. Applied Surface Science, 2018, 427:102-111.
[62] TIAN J, CUI C, XIE Q, et al. EMIMBF4-GBL binary electrolyte working at -70℃ and 3.7 V for a high performance graphene-based capacitor[J]. Journal of Materials Chemistry:A, 2018, 6(8):3593-3601.
[63] SCHÜTTER C, HUSCH T, KORTH M, et al. Toward new solvents for EDLCs:from computational screening to electrochemical validation[J]. Journal of Physical Chemistry:C, 2015, 119(24):13413-13424.
[64] CHAE J H, CHEN G Z. 1.9V aqueous carbon-carbon supercapacitors with unequal electrode capacitances[J]. Electrochimica Acta, 2012, 86:248-254.
[65] LAZZARI M, SOAVI F, MASTRAGOSTINO M. High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes[J]. Journal of Power Sources, 2008, 178(1):490-496.
[66] CERICOLA D, KÖTZ R, WOKAUN A. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes[J]. Journal of Power Sources, 2011, 196(6):3114-3118.
[67] BRANDT A, ISKEN P, LEX-BALDUCCI A, et al. Adiponitrile-based electrochemical double layer capacitor[J]. Journal of Power Sources, 2012, 204:213-219.
[68] ZHENG J P. High energy density electrochemical capacitors without consumption of electrolyte[J]. Journal of the Electrochemical Society, 2009, 156(7):A500.