Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (9): 47-58    DOI: 10.11868/j.issn.1001-4381.2019.000721
  综述 本期目录 | 过刊浏览 | 高级检索 |
高比能超级电容器:电极材料、电解质和能量密度限制原理
郑俊生1,2,*(), 秦楠1,2, 郭鑫1,2, 金黎明1,2, ZhengJim P2,3
1 同济大学 新能源汽车工程中心, 上海 201804
2 同济大学 汽车学院, 上海 201804
3 佛罗里达州立大学, 佛罗里达 32310
High energy density supercapacitors: electrode material, electrolyte and energy density limitation principle
Jun-sheng ZHENG1,2,*(), Nan QIN1,2, Xin GUO1,2, Li-ming JIN1,2, Jim P Zheng2,3
1 Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
2 School of Automotive Studies, Tongji University, Shanghai 201804, China
3 Florida State University, Florida 32310, USA
全文: PDF(5089 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

超级电容器是一种功率型储能器件,具有高功率密度和长循环寿命等优点。但是其能量密度很低,这限制了更宽范围的应用。本文首先介绍目前超级电容器工作原理,归纳总结了电极材料应具有的特点以及目前研究进展,然后总结了水系、有机系和离子液体电解质的特点及相关进展。最后指出了超级电容器能量密度限制原因和影响因素,并且从电极材料、电解质以及超级电容器结构三个方面出发,分析讨论超级电容器能量密度的提升措施。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑俊生
秦楠
郭鑫
金黎明
ZhengJim P
关键词 超级电容器能量密度限制原理提升方法    
Abstract

Supercapacitors are power-type energy storage devices with high power density and long cycle life. However, the low energy density limits wider applications. In this paper, the working principle of supercapacitors was first introduced, and the characteristics of electrode materials needed and current progress were summarized. Then, the characteristics and related progress of aqueous, organic and ionic liquid electrolytes were introduced. Finally, the principle and the factors of energy density limitation of supercapacitors were pointed out, and the improvement methods were discussed from the aspects of electrode materials, electrolytes and the structure of supercapacitors, respectively.

Key wordssupercapacitor    energy density    limitation principle    improvement method
收稿日期: 2019-08-01      出版日期: 2020-09-17
中图分类号:  O646  
基金资助:国家自然科学基金(51777140);上海市科学技术委员会科研计划项目(17DZ1200403);同济大学中央高校基本科研业务基金(22120180519);同济大学中央高校基本科研业务基金(22120180308)
通讯作者: 郑俊生     E-mail: jszheng@tongji.edu.cn
作者简介: 郑俊生(1979-), 男, 副研究员, 博士, 研究方向为车用新能源, 联系地址:上海市嘉定区安亭镇曹安公路4800号同济大学新能源工程中心411室(201804), E-mail:jszheng@tongji.edu.cn
引用本文:   
郑俊生, 秦楠, 郭鑫, 金黎明, ZhengJim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
Jun-sheng ZHENG, Nan QIN, Xin GUO, Li-ming JIN, Jim P Zheng. High energy density supercapacitors: electrode material, electrolyte and energy density limitation principle. Journal of Materials Engineering, 2020, 48(9): 47-58.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000721      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/47
Fig.1  超级电容器技术储能路线图
Fig.2  描述双电层电容器储能机理的模型[5]
(a)Helmholtz双电层模型; (b)GC双电层模型; (c)Stern双电层模型
Fig.3  描述多种孔隙状态的纳米多孔碳超级电容器的通用模型[9]
Fig.4  双电层电容器结构示意图[10]
Fig.5  水系对称型超级电容器的电化学稳定区间[49]
(a)5 mol·L-1 LiCl电解液;(b)0.5 mol·L-1 H2SO4电解液;(c)1 mol·L-1 KOH电解液
Fig.6  α=1/2时电解质不同盐浓度的电容器的能量密度与比电容之间的关系[57]
Fig.7  归一化电容与孔径尺寸和离子尺寸比例的关系[24]
(a)点数据图;(b)标准化电容图
Fig.8  通过电极电容的不均衡调节正负极电位窗口,增加工作电压[64](a)和通过表面电荷修饰改变开路电压,可控调节电极的工作电压范围[49](b)的示意图
Fig.9  未完全利用稳定电位区间的有机碳基超级电容器示例及改进方法示意图
(a)EDLC在施加不同电压时释放气体示意图[53];(b)正极电位先达到稳定电位区间界限的对称超级电容器;(c)负极电位先达到稳定电位区间界限的对称超级电容器;(d)完全利用稳定电位区间的非对称超级电容器
Fig.10  充电过程,锂离子电容器和双电层电容器正负极电位变化示意图[16]
1 SIMON P , GOGOTSI Y . Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7 (11): 845- 854.
doi: 10.1038/nmat2297
2 WANG Y , SONG Y , XIA Y . Electrochemical capacitors:mechanism, materials, systems, characterization and applications[J]. Chem Soc Rev, 2016, 45 (21): 5925- 5950.
doi: 10.1039/C5CS00580A
3 HELMHOLTZ H . Studien über electrische Grenzschichten[J]. Annalen der Physik, 1879, 243 (7): 337- 382.
doi: 10.1002/andp.18792430702
4 ZHANG L L , ZHAO X S . Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38 (9): 2520- 2531.
doi: 10.1039/b813846j
5 BEGUIN F , PRESSER V , BALDUCCI A , et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials, 2014, 26 (14): 2219- 2251, 2283.
doi: 10.1002/adma.201304137
6 CHAPMAN D L . A contribution to the theory of electrocapillarity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2010, 25 (148): 475- 481.
7 GOUY M . Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. J Phys Theor Appl, 1910, 9 (1): 457- 468.
doi: 10.1051/jphystap:019100090045700
8 STERN O . Zur theorie der elektrolytischen doppelschicht[J]. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 1924, 30 (21/22): 508- 516.
9 HUANG J , SUMPTER B G , MEUNIER V . A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry, 2008, 14 (22): 6614- 6626.
doi: 10.1002/chem.200800639
10 ZHONG C , DENG Y , HU W , et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44 (21): 7484- 7539.
doi: 10.1039/C5CS00303B
11 CONWAY B E , BIRSS V , WOJTOWICZ J . The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. Journal of Power Sources, 1997, 66 (1): 1- 14.
12 JIANG Y , LIU J . Definitions of pseudocapacitive materials:a brief review[J]. Energy & Environmental Materials, 2019, 2 (1): 30- 37.
13 AUGUSTYN V , SIMON P , DUNN B . Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy and Environmental Science, 2014, 7 (5): 1597- 1614.
doi: 10.1039/c3ee44164d
14 LI H B , YU M H , WANG F X , et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials[J]. Nature Communications, 2013, 4, 1- 7.
15 HERRERO E , BULLER L J , ABRUÑA H D . Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials[J]. Chemical Reviews, 2001, 101 (7): 1897- 1930.
doi: 10.1021/cr9600363
16 NAOI K , ISHIMOTO S , MIYAMOTO J , et al. Second generation 'nanohybrid supercapacitor':evolution of capacitive energy storage devices[J]. Energy & Environmental Science, 2012, 5 (11): 9363.
17 JIN L , GONG R , ZHANG W , et al. Toward high energy-density and long cycling-lifespan lithium ion capacitors:a 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode[J]. Journal of Materials Chemistry:A, 2019, 7 (14): 8234- 8244.
doi: 10.1039/C8TA12000E
18 JIN L , GONG R , ZHENG J , et al. Fabrication of dual-modified carbon network enabling improved electronic and ionic conductivities for fast and durable Li2TiSiO5 anodes[J]. Chem Electro Chem, 2019, 6, 3020- 3029.
19 LIU H J , WANG J , WANG C X , et al. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor[J]. Advanced Energy Materials, 2011, 1 (6): 1101- 1108.
doi: 10.1002/aenm.201100255
20 PRESSER V , ZHANG L , NIU J J , et al. Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability[J]. Advanced Energy Materials, 2011, 1 (3): 423- 430.
doi: 10.1002/aenm.201100047
21 ZHOU H , ZHU S , HIBINO M , et al. Electrochemical capacitance of self-ordered mesoporous carbon[J]. Journal of Power Sources, 2003, 122 (2): 219- 223.
doi: 10.1016/S0378-7753(03)00439-7
22 YOSHIDA N , HIROTA Y , UCHIDA Y , et al. Solvent-free synthesis and KOH activation of mesoporous carbons using resorcinol/Pluronic F127/hexamethylenetetramine mixture and their application to EDLC[J]. Microporous and Mesoporous Materials, 2018, 272, 217- 221.
doi: 10.1016/j.micromeso.2018.06.028
23 YANG I , KIM S G , KWON S H , et al. Pore size-controlled carbon aerogels for EDLC electrodes in organic electrolytes[J]. Current Applied Physics, 2016, 16 (6): 665- 672.
doi: 10.1016/j.cap.2016.03.019
24 POHLMANN S , RAMIREZ-CASTRO C , BALDUCCI A . The influence of conductive salt ion selection on EDLC electrolyte characteristics and carbon-electrolyte interaction[J]. Journal of the Electrochemical Society, 2015, 162 (5): A5020- A5030.
doi: 10.1149/2.0041505jes
25 URITA K , URITA C , FUJITA K , et al. The ideal porous structure of EDLC carbon electrodes with extremely high capacitance[J]. Nanoscale, 2017, 9 (40): 15643- 15649.
doi: 10.1039/C7NR05307J
26 CONWAY B E . Electrochemical supercapacitors:scientific fundamentals and technological applications[M]. New York: Kluwer Acadamicl/Plenum Publisher, 1999.
27 HSU Y H , LAI C C , HO C L , et al. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors[J]. Electrochimica Acta, 2014, 12 (7): 369- 376.
28 FRACKOWIAK E , GAUTIER S , GAUCHER H , et al. Electrochemical storage of lithium in multiwalled carbon nanotubes[J]. Carbon, 1999, 37 (1): 61- 69.
29 FRACKOWIAK E , DELPEUX S , JUREWICZ K , et al. Enhanced capacitance of carbon nanotubes through chemical activation[J]. Chemical Physics Letters, 2002, 361 (1): 35- 41.
30 FUTABA D N , HATA K , YAMADA T , et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 2006, 5 (12): 987- 994.
doi: 10.1038/nmat1782
31 CHANG L , STACCHIOLA D J , HU Y H . An ideal electrode material, 3D surface-microporous graphene for supercapacitors with ultrahigh areal capacitance[J]. ACS Appl Mater Interfaces, 2017, 9 (29): 24655- 24661.
doi: 10.1021/acsami.7b07381
32 YAN J , REN C E , MALESKI K , et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017, 27 (30): 1701264.
doi: 10.1002/adfm.201701264
33 YANG X , WU D , CHEN X , et al. Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application[J]. Journal of Physical Chemistry:C, 2010, 114 (18): 8581- 8586.
doi: 10.1021/jp101255d
34 GOPALAKRISHNAN M , SRIKESH G , MOHAN A , et al. In situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications[J]. Applied Surface Science, 2017, 40 (3): 578- 583.
35 ZHENG J P , CYGAN P J , JOW T R . Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1995, 142 (8): 2699- 2703.
doi: 10.1149/1.2050077
36 KRAUSE P P T , CAMUKA H , LEICHTWEISS T , et al. Temperature-induced transformation of electrochemically formed hydrous RuO2 layers over Ru(0001) model electrodes[J]. Nanoscale, 2016, 8 (29): 13944- 13953.
doi: 10.1039/C6NR00732E
37 MAJUMDAR D . An overview on ruthenium oxide composites-challenging material for energy storage applications[J]. Material Science Research India, 2018, 15 (1): 30- 40.
38 MAJUMDAR D , MAIYALAGAN T , JIANG Z . Recent progress in ruthenium oxide-based composites for supercapacitor applications[J]. Chem Electro Chem, 2019, 6 (17): 4343- 4372.
39 LEE H Y , GOODENOUGH J B . Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry, 1999, 144 (1): 220- 223.
doi: 10.1006/jssc.1998.8128
40 ZHU Q , LIU K , ZHOU J , et al. Design of a unique 3D-nanostructure to make MnO2 work as supercapacitor material in acid environment[J]. Chemical Engineering Journal, 2017, 321, 554- 563.
doi: 10.1016/j.cej.2017.03.147
41 YU N , YIN H , ZHANG W , et al. High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics[J]. Advanced Energy Materials, 2016, 6 (2): 1- 9.
42 GUO W , YU C , LI S , et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors:challenges and perspectives[J]. Nano Energy, 2019, 57, 459- 472.
doi: 10.1016/j.nanoen.2018.12.015
43 DONG L , LIANG G , XU C , et al. Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability[J]. Journal of Materials Chemistry:A, 2017, 5 (37): 19934- 19942.
doi: 10.1039/C7TA06135H
44 MA Y , HOU C , ZHANG H , et al. Morphology-dependent electrochemical supercapacitors in multi-dimensional polyaniline nanostructures[J]. Journal of Materials Chemistry:A, 2017, 5 (27): 14041- 14052.
doi: 10.1039/C7TA03279J
45 ZANG L , LIU Q , QIU J , et al. Design and fabrication of an all-solid-state polymer supercapacitor with highly mechanical flexibility based on polypyrrole hydrogel[J]. ACS Appl Mater Interfaces, 2017, 9 (39): 33941- 33947.
doi: 10.1021/acsami.7b10321
46 HERRMANN S , AYDEMIR N , NÄGELE F , et al. Enhanced capacitive energy storage in polyoxometalate-doped polypyrrole[J]. Advanced Functional Materials, 2017, 27 (25): 1700881.
doi: 10.1002/adfm.201700881
47 AMBADE R B , AMBADE S B , SHRESTHA N K , et al. Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications[J]. Journal of Materials Chemistry:A, 2017, 5 (1): 172- 180.
48 YI Z , BETTINI L G , TOMASELLO G , et al. Flexible conducting polymer transistors with supercapacitor function[J]. Journal of Polymer Science Part B, 2017, 55 (1): 96- 103.
doi: 10.1002/polb.24244
49 YU M , LIN D , FENG H , et al. Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge[J]. Angewandte Chemie International Edition, 2017, 56 (20): 5454- 5459.
doi: 10.1002/anie.201701737
50 NAOI K . 'Nanohybrid capacitor':the next generation electrochemical capacitors[J]. Fuel Cells, 2010, 10 (5): 825- 833.
doi: 10.1002/fuce.201000041
51 UE M . Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone[J]. Journal of the Electrochemical Society, 1994, 141 (12): 3336- 3342.
doi: 10.1149/1.2059336
52 XU K , DING M S , JOW T R . Quaternary onium salts as nonaqueous electrolytes for electrochemical capacitors[J]. Journal of the Electrochemical Society, 2001, 148 (3): A267- A274.
53 ISHIMOTO S , ASAKAWA Y , SHINYA M , et al. Degradation responses of activated-carbon-based EDLCs for higher voltage operation and their factors[J]. Journal of the Electrochemical Society, 2009, 156 (7): A563.
doi: 10.1149/1.3126423
54 MASTRAGOSTINO M , SOAVI F . Strategies for high-performance supercapacitors for HEV[J]. Journal of Power Sources, 2007, 174 (1): 89- 93.
55 WEINGARTH D , NOH H , FOELSKE-SCHMITZ A , et al. A reliable determination method of stability limits for electrochemical double layer capacitors[J]. Electrochimica Acta, 2013, 103, 119- 124.
doi: 10.1016/j.electacta.2013.04.057
56 NANBU N , EBINA T , UNO H , et al. Physical and electrochemical properties of quaternary ammonium bis(oxalato)borates and their application to electric double-layer capacitors[J]. Electrochimica Acta, 2006, 52 (4): 1763- 1770.
doi: 10.1016/j.electacta.2006.03.105
57 ZHENG J P , HUANG J , JOW T R . The limitations of energy density for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1997, 144 (6): 2026- 2031.
doi: 10.1149/1.1837738
58 NOKED M , AVRAHAM E , BOHADANA Y , et al. Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition[J]. Journal of Physical Chemistry:C, 2009, 113 (17): 7316- 7321.
doi: 10.1021/jp811283b
59 LI X , WANG Z , GUO L , et al. Manganese oxide/hierarchical porous carbon nanocomposite from oily sludge for high-performance asymmetric supercapacitors[J]. Electrochimica Acta, 2018, 265, 71- 77.
doi: 10.1016/j.electacta.2018.01.156
60 LI Y , YU N , YAN P , et al. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors[J]. Journal of Power Sources, 2015, 300, 309- 317.
doi: 10.1016/j.jpowsour.2015.09.077
61 AHUJA P , UJJAIN S K , KANOJIA R . Electrochemical behaviour of manganese & ruthenium mixed oxide@reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor[J]. Applied Surface Science, 2018, 427, 102- 111.
doi: 10.1016/j.apsusc.2017.08.028
62 TIAN J , CUI C , XIE Q , et al. EMIMBF4-GBL binary electrolyte working at -70℃ and 3.7 V for a high performance graphene-based capacitor[J]. Journal of Materials Chemistry:A, 2018, 6 (8): 3593- 3601.
doi: 10.1039/C7TA10474J
63 SCHÜTTER C , HUSCH T , KORTH M , et al. Toward new solvents for EDLCs:from computational screening to electrochemical validation[J]. Journal of Physical Chemistry:C, 2015, 119 (24): 13413- 13424.
doi: 10.1021/acs.jpcc.5b02113
64 CHAE J H , CHEN G Z . 1.9V aqueous carbon-carbon supercapacitors with unequal electrode capacitances[J]. Electrochimica Acta, 2012, 86, 248- 254.
doi: 10.1016/j.electacta.2012.07.033
65 LAZZARI M , SOAVI F , MASTRAGOSTINO M . High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes[J]. Journal of Power Sources, 2008, 178 (1): 490- 496.
doi: 10.1016/j.jpowsour.2007.12.029
66 CERICOLA D , KÖTZ R , WOKAUN A . Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes[J]. Journal of Power Sources, 2011, 196 (6): 3114- 3118.
doi: 10.1016/j.jpowsour.2010.11.157
67 BRANDT A , ISKEN P , LEX-BALDUCCI A , et al. Adiponitrile-based electrochemical double layer capacitor[J]. Journal of Power Sources, 2012, 204, 213- 219.
doi: 10.1016/j.jpowsour.2011.12.025
68 ZHENG J P . High energy density electrochemical capacitors without consumption of electrolyte[J]. Journal of the Electrochemical Society, 2009, 156 (7): A500.
doi: 10.1149/1.3121564
[1] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[2] 何仁杰, 李书萍, 王许敏, 余创, 程时杰, 谢佳. 锂离子电池厚电极结构设计的研究进展[J]. 材料工程, 2022, 50(10): 38-54.
[3] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[4] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[5] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[6] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[7] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[10] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[11] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[12] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[13] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[14] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[15] 陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn