Please wait a minute...
材料工程  2020, Vol. 48 Issue (9): 47-58    DOI: 10.11868/j.issn.1001-4381.2019.000721
  综述 本期目录 | 过刊浏览 | 高级检索 |
郑俊生1,2, 秦楠1,2, 郭鑫1,2, 金黎明1,2, Zheng Jim P2,3
1. 同济大学 新能源汽车工程中心, 上海 201804;
2. 同济大学 汽车学院, 上海 201804;
3. 佛罗里达州立大学, 佛罗里达 32310
High energy density supercapacitors: electrode material,electrolyte and energy density limitation principle
ZHENG Jun-sheng1,2, QIN Nan1,2, GUO Xin1,2, JIN Li-ming1,2, P Zheng2,3
1. Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China;
2. School of Automotive Studies, Tongji University, Shanghai 201804, China;
3. Florida State University, Florida 32310, USA
全文: PDF(5089 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 超级电容器是一种功率型储能器件,具有高功率密度和长循环寿命等优点。但是其能量密度很低,这限制了更宽范围的应用。本文首先介绍目前超级电容器工作原理,归纳总结了电极材料应具有的特点以及目前研究进展,然后总结了水系、有机系和离子液体电解质的特点及相关进展。最后指出了超级电容器能量密度限制原因和影响因素,并且从电极材料、电解质以及超级电容器结构三个方面出发,分析讨论超级电容器能量密度的提升措施。
E-mail Alert
Zheng Jim P
关键词 超级电容器能量密度限制原理提升方法    
Abstract:Supercapacitors are power-type energy storage devices with high power density and long cycle life. However, the low energy density limits wider applications. In this paper, the working principle of supercapacitors was first introduced, and the characteristics of electrode materials needed and current progress were summarized. Then, the characteristics and related progress of aqueous, organic and ionic liquid electrolytes were introduced. Finally, the principle and the factors of energy density limitation of supercapacitors were pointed out, and the improvement methods were discussed from the aspects of electrode materials, electrolytes and the structure of supercapacitors, respectively.
Key wordssupercapacitor    energy density    limitation principle    improvement method
收稿日期: 2019-08-01      出版日期: 2020-09-17
中图分类号:  O646  
通讯作者: 郑俊生(1979-),男,副研究员,博士,研究方向为车用新能源,联系地址:上海市嘉定区安亭镇曹安公路4800号同济大学新能源工程中心411室(201804),     E-mail:
郑俊生, 秦楠, 郭鑫, 金黎明, Zheng Jim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
ZHENG Jun-sheng, QIN Nan, GUO Xin, JIN Li-ming, P Zheng. High energy density supercapacitors: electrode material,electrolyte and energy density limitation principle. Journal of Materials Engineering, 2020, 48(9): 47-58.
链接本文:      或
[1] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008,7(11):845-854.
[2] WANG Y, SONG Y, XIA Y. Electrochemical capacitors:mechanism, materials, systems, characterization and applications[J]. Chem Soc Rev, 2016, 45(21):5925-5950.
[3] HELMHOLTZ H. Studien über electrische Grenzschichten[J]. Annalen der Physik, 1879, 243(7):337-382.
[4] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38(9):2520-2531.
[5] BEGUIN F, PRESSER V, BALDUCCI A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials, 2014, 26(14):2219-2251,2283.
[6] CHAPMAN D L. A contribution to the theory of electrocapillarity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2010, 25(148):475-481.
[7] GOUY M. Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. J Phys Theor Appl, 1910, 9(1):457-468.
[8] STERN O. Zur theorie der elektrolytischen doppelschicht[J]. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 1924, 30(21/22):508-516.
[9] HUANG J, SUMPTER B G, MEUNIER V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry, 2008, 14(22):6614-6626.
[10] ZHONG C, DENG Y, HU W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21):7484-7539.
[11] CONWAY B E, BIRSS V, WOJTOWICZ J. The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. Journal of Power Sources, 1997, 66(1):1-14.
[12] JIANG Y, LIU J. Definitions of pseudocapacitive materials:a brief review[J]. Energy & Environmental Materials, 2019, 2(1):30-37.
[13] AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy and Environmental Science, 2014, 7(5):1597-1614.
[14] LI H B, YU M H, WANG F X, et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials[J]. Nature Communications, 2013, 4:1-7.
[15] HERRERO E, BULLER L J, ABRUÑA H D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials[J]. Chemical Reviews, 2001, 101(7):1897-1930.
[16] NAOI K, ISHIMOTO S, MIYAMOTO J, et al. Second generation ‘nanohybrid supercapacitor’:evolution of capacitive energy storage devices[J]. Energy & Environmental Science, 2012, 5(11):9363.
[17] JIN L, GONG R, ZHANG W, et al. Toward high energy-density and long cycling-lifespan lithium ion capacitors:a 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode[J]. Journal of Materials Chemistry:A, 2019, 7(14):8234-8244.
[18] JIN L, GONG R, ZHENG J, et al. Fabrication of dual-modified carbon network enabling improved electronic and ionic conductivities for fast and durable Li2TiSiO5 anodes[J]. Chem Electro Chem, 2019, 6:3020-3029.
[19] LIU H J, WANG J, WANG C X, et al. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor[J]. Advanced Energy Materials, 2011, 1(6):1101-1108.
[20] PRESSER V, ZHANG L, NIU J J, et al. Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability[J]. Advanced Energy Materials, 2011, 1(3):423-430.
[21] ZHOU H, ZHU S, HIBINO M, et al. Electrochemical capacitance of self-ordered mesoporous carbon[J]. Journal of Power Sources, 2003, 122(2):219-223.
[22] YOSHIDA N, HIROTA Y, UCHIDA Y, et al. Solvent-free synthesis and KOH activation of mesoporous carbons using resorcinol/Pluronic F127/hexamethylenetetramine mixture and their application to EDLC[J]. Microporous and Mesoporous Materials, 2018, 272:217-221.
[23] YANG I, KIM S G, KWON S H, et al. Pore size-controlled carbon aerogels for EDLC electrodes in organic electrolytes[J]. Current Applied Physics, 2016, 16(6):665-672.
[24] POHLMANN S, RAMIREZ-CASTRO C, BALDUCCI A. The influence of conductive salt ion selection on EDLC electrolyte characteristics and carbon-electrolyte interaction[J]. Journal of the Electrochemical Society, 2015, 162(5):A5020-A5030.
[25] URITA K, URITA C, FUJITA K, et al. The ideal porous structure of EDLC carbon electrodes with extremely high capacitance[J]. Nanoscale, 2017, 9(40):15643-15649.
[26] CONWAY B E. Electrochemical supercapacitors:scientific fundamentals and technological applications[M]. New York:Kluwer Acadamicl/Plenum Publisher, 1999.
[27] HSU Y H, LAI C C, HO C L, et al. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors[J]. Electrochimica Acta, 2014, 12(7):369-376.
[28] FRACKOWIAK E, GAUTIER S, GAUCHER H, et al. Electrochemical storage of lithium in multiwalled carbon nanotubes[J]. Carbon, 1999, 37(1):61-69.
[29] FRACKOWIAK E, DELPEUX S, JUREWICZ K, et al. Enhanced capacitance of carbon nanotubes through chemical activation[J]. Chemical Physics Letters, 2002, 361(1):35-41.
[30] FUTABA D N, HATA K, YAMADA T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 2006, 5(12):987-994.
[31] CHANG L, STACCHIOLA D J, HU Y H. An ideal electrode material, 3D surface-microporous graphene for supercapacitors with ultrahigh areal capacitance[J]. ACS Appl Mater Interfaces, 2017, 9(29):24655-24661.
[32] YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017, 27(30):1701264.
[33] YANG X, WU D, CHEN X, et al. Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application[J]. Journal of Physical Chemistry:C, 2010, 114(18):8581-8586.
[34] GOPALAKRISHNAN M, SRIKESH G, MOHAN A, et al. In situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications[J]. Applied Surface Science, 2017, 40(3):578-583.
[35] ZHENG J P, CYGAN P J, JOW T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1995, 142(8):2699-2703.
[36] KRAUSE P P T, CAMUKA H, LEICHTWEISS T, et al. Temperature-induced transformation of electrochemically formed hydrous RuO2 layers over Ru(0001) model electrodes[J]. Nanoscale, 2016, 8(29):13944-13953.
[37] MAJUMDAR D. An overview on ruthenium oxide composites-challenging material for energy storage applications[J]. Material Science Research India, 2018, 15(1):30-40.
[38] MAJUMDAR D, MAIYALAGAN T, JIANG Z. Recent progress in ruthenium oxide-based composites for supercapacitor applications[J]. Chem Electro Chem, 2019,6(17):4343-4372.
[39] LEE H Y, GOODENOUGH J B. Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry, 1999, 144(1):220-223.
[40] ZHU Q, LIU K, ZHOU J, et al. Design of a unique 3D-nanostructure to make MnO2 work as supercapacitor material in acid environment[J]. Chemical Engineering Journal, 2017, 321:554-563.
[41] YU N, YIN H, ZHANG W, et al. High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics[J]. Advanced Energy Materials, 2016, 6(2):1-9.
[42] GUO W, YU C, LI S, et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors:challenges and perspectives[J]. Nano Energy, 2019, 57:459-472.
[43] DONG L, LIANG G, XU C, et al. Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability[J]. Journal of Materials Chemistry:A, 2017, 5(37):19934-19942.
[44] MA Y, HOU C, ZHANG H, et al. Morphology-dependent electrochemical supercapacitors in multi-dimensional polyaniline nanostructures[J]. Journal of Materials Chemistry:A, 2017, 5(27):14041-14052.
[45] ZANG L, LIU Q, QIU J, et al. Design and fabrication of an all-solid-state polymer supercapacitor with highly mechanical flexibility based on polypyrrole hydrogel[J]. ACS Appl Mater Interfaces, 2017, 9(39):33941-33947.
[46] HERRMANN S, AYDEMIR N, NÄGELE F, et al. Enhanced capacitive energy storage in polyoxometalate-doped polypyrrole[J]. Advanced Functional Materials, 2017, 27(25):1700881.
[47] AMBADE R B, AMBADE S B, SHRESTHA N K, et al. Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications[J]. Journal of Materials Chemistry:A, 2017, 5(1):172-180.
[48] YI Z, BETTINI L G, TOMASELLO G, et al. Flexible conducting polymer transistors with supercapacitor function[J]. Journal of Polymer Science Part B, 2017, 55(1):96-103.
[49] YU M, LIN D, FENG H, et al. Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge[J]. Angewandte Chemie International Edition, 2017, 56(20):5454-5459.
[50] NAOI K. ‘Nanohybrid capacitor’:the next generation electrochemical capacitors[J]. Fuel Cells, 2010, 10(5):825-833.
[51] UE M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone[J]. Journal of the Electrochemical Society, 1994, 141(12):3336-3342.
[52] XU K, DING M S, JOW T R. Quaternary onium salts as nonaqueous electrolytes for electrochemical capacitors[J]. Journal of the Electrochemical Society, 2001, 148(3):A267-A274.
[53] ISHIMOTO S, ASAKAWA Y, SHINYA M, et al. Degradation responses of activated-carbon-based EDLCs for higher voltage operation and their factors[J]. Journal of the Electrochemical Society, 2009, 156(7):A563.
[54] MASTRAGOSTINO M, SOAVI F. Strategies for high-performance supercapacitors for HEV[J]. Journal of Power Sources, 2007, 174(1):89-93.
[55] WEINGARTH D, NOH H, FOELSKE-SCHMITZ A, et al. A reliable determination method of stability limits for electrochemical double layer capacitors[J]. Electrochimica Acta, 2013, 103:119-124.
[56] NANBU N, EBINA T, UNO H, et al. Physical and electrochemical properties of quaternary ammonium bis(oxalato)borates and their application to electric double-layer capacitors[J]. Electrochimica Acta, 2006, 52(4):1763-1770.
[57] ZHENG J P, HUANG J, JOW T R. The limitations of energy density for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1997, 144(6):2026-2031.
[58] NOKED M, AVRAHAM E, BOHADANA Y, et al. Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition[J]. Journal of Physical Chemistry:C, 2009, 113(17):7316-7321.
[59] LI X, WANG Z, GUO L, et al. Manganese oxide/hierarchical porous carbon nanocomposite from oily sludge for high-performance asymmetric supercapacitors[J]. Electrochimica Acta, 2018, 265:71-77.
[60] LI Y, YU N, YAN P, et al. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors[J]. Journal of Power Sources, 2015, 300:309-317.
[61] AHUJA P, UJJAIN S K, KANOJIA R. Electrochemical behaviour of manganese & ruthenium mixed oxide@reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor[J]. Applied Surface Science, 2018, 427:102-111.
[62] TIAN J, CUI C, XIE Q, et al. EMIMBF4-GBL binary electrolyte working at -70℃ and 3.7 V for a high performance graphene-based capacitor[J]. Journal of Materials Chemistry:A, 2018, 6(8):3593-3601.
[63] SCHÜTTER C, HUSCH T, KORTH M, et al. Toward new solvents for EDLCs:from computational screening to electrochemical validation[J]. Journal of Physical Chemistry:C, 2015, 119(24):13413-13424.
[64] CHAE J H, CHEN G Z. 1.9V aqueous carbon-carbon supercapacitors with unequal electrode capacitances[J]. Electrochimica Acta, 2012, 86:248-254.
[65] LAZZARI M, SOAVI F, MASTRAGOSTINO M. High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes[J]. Journal of Power Sources, 2008, 178(1):490-496.
[66] CERICOLA D, KÖTZ R, WOKAUN A. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes[J]. Journal of Power Sources, 2011, 196(6):3114-3118.
[67] BRANDT A, ISKEN P, LEX-BALDUCCI A, et al. Adiponitrile-based electrochemical double layer capacitor[J]. Journal of Power Sources, 2012, 204:213-219.
[68] ZHENG J P. High energy density electrochemical capacitors without consumption of electrolyte[J]. Journal of the Electrochemical Society, 2009, 156(7):A500.
[1] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[2] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[3] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[4] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[5] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[6] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[7] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[8] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[9] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[10] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[11] 田玉, 丁滔滔, 朱小龙, 郑广, 詹志明. NaV6O15纳米杆的制备及其电化学性能[J]. 材料工程, 2019, 47(10): 105-112.
[12] 陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24.
[13] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[14] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[15] 王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017, 45(12): 112-125.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持