Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (7): 111-118    DOI: 10.11868/j.issn.1001-4381.2019.000724
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能
张梦清1, 于鹤龙1, 王红美1, 尹艳丽1, 魏敏2, 乔玉林3, 张伟2, 徐滨士1
1. 陆军装甲兵学院 装备再制造技术国防科技重点实验室, 北京 100072;
2. 河北京津冀再制造产业技术研究院, 河北 河间 062450;
3. 陆军装甲兵学院 机械产品再制造国家工程研究中心, 北京 100072
Microstructure and mechanical properties of in -situ TiB reinforced Ti-based composite coating by induction cladding
ZHANG Meng-qing1, YU He-long1, WANG Hong-mei1, YIN Yan-li1, WEI Min2, QIAO Yu-lin3, ZHANG Wei2, XU Bin-shi1
1. National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China;
2. Hebei Jingjinji Institute of Remanufacturing Industry&Technology, Hejian 062450, Hebei, China;
3. National Engineering Research Center for Mechanical Product Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
全文: PDF(4182 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用高频感应加热熔化(90%钛(原子分数,下同)+10%硼)预置涂层的方法在Ti6Al4V基体表面制备感应熔覆原位TiB增强Ti基复合涂层,利用扫描电镜、能谱仪、X射线衍射仪、显微硬度计和纳米压痕仪等研究复合涂层的显微结构、物相构成及微纳米力学性能。结果表明:感应熔覆钛基复合涂层表面光滑平整,内部无裂纹和孔隙,与基体形成良好的冶金结合;熔覆过程中Ti与B充分反应生成TiB增强相,涂层基质相由α-Ti和少量β-Ti构成。原位TiB增强体在涂层内部分布均匀,体积分数约为9.4%,纳米压痕硬度和弹性模量高达35 GPa和545 GPa。复合涂层的显微硬度达到525HV0.2,较Ti6Al4V基体材料提高了约67%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张梦清
于鹤龙
王红美
尹艳丽
魏敏
乔玉林
张伟
徐滨士
关键词 感应熔覆TiB原位合成钛基复合涂层力学性能    
Abstract:Induction cladding TiB/Ti composite coating was in-situ synthesized by induction heating the preplaced powder mixture of 90% Ti (atom fraction, the same below) and 10% boron on a Ti6Al4V substrate. The microstructure, phase composition and micro/nano mechanical properties of the coating were studied by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), microhardness tester and nanoindentation tester. The results indicate that the composite coating has a smooth surface and a dense microstructure without cracks and pores. A strong metallurgical adherence is formed between the coating and the substrate. During induction cladding process, B and Ti are fully reacted to in-situ form TiB reinforcements. The matrix of the coating consists of α-Ti phase and a few β-Ti phases. The reinforcements of in-situ synthesized TiB are uniformly distributed in the coating with a volume fraction about of 9.4%. Indentation hardness and modulus of the in-situ TiB particles are about 35 GPa and 545 GPa, respectively, which cause the increase of the microhardness of the composite coating to about 525HV0.2. It is increased by 67% as against the Ti6Al4V substrate.
Key wordsinduction cladding    TiB    in-situ synthesis    Ti matrix composite coating    mechanical property
收稿日期: 2019-08-06      出版日期: 2020-07-21
中图分类号:  TG174.44  
基金资助: 
通讯作者: 于鹤龙(1979-),男,副研究员,博士,现主要从事表面新材料与摩擦学研究,联系地址:北京市丰台区杜家坎21号陆军装甲兵学院(100072),E-mail:helong.yu@163.com     E-mail: helong.yu@163.com
引用本文:   
张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
ZHANG Meng-qing, YU He-long, WANG Hong-mei, YIN Yan-li, WEI Min, QIAO Yu-lin, ZHANG Wei, XU Bin-shi. Microstructure and mechanical properties of in -situ TiB reinforced Ti-based composite coating by induction cladding. Journal of Materials Engineering, 2020, 48(7): 111-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000724      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/111
[1] HO W, CHIANG T, WU S, et al. Mechanical properties and deformation behavior of cast binary Ti-Cr alloys[J]. Journal of Alloys and Compounds, 2009, 468:533-538.
[2] RABINOWICZ E. Friction properties of titanium and its alloys[J]. Metal Progress, 1954, 65:(2):107-110.
[3] DONG H S. Surface engineering of light alloys[M]. Amsterdam:Elsevier, 2010.
[4] 李邦盛,尚俊玲,郭景杰,等. 原位TiB/Ti复合材料的熔铸制备及其显微组织[J]. 材料研究学报, 2005, 19(4):375-381. LI B S, SHANG J L, GUO J J, et al. Microstructure of investment casting in-situ TiB/Ti composites[J]. Chinese Journal of Materials Research, 2005, 19(4):375-381.
[5] WU Y, WANG A H, ZHANG Z. Microstructure, wear resistance and cell proliferation ability of in situ synthesized Ti-B coating produced by laser alloying[J]. Optics and Laser Technology, 2015, 67:176-182.
[6] GORSSE S, PETITCORPS L Y, MATAR S, et al. Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite[J]. Materials Science and Engineering:A, 2003, 340:80-87.
[7] 张杰,翟瑾蕃. 原位生成TiBw/Ti复合材料的微观组织及高温压缩变形过程的演化规律[J]. 材料工程, 2002(8):11-12. ZHANG J, ZHAI J F. Microstructure of the in situ TiBw/Ti composite and its evolution during hot deformation[J]. Journal of Materials Engineering, 2002(8):11-12.
[8] 林英华,陈志勇,李月华,等. TC4钛合金表面激光熔覆原位制备TiB陶瓷涂层的微观组织特征与硬度特性[J]. 红外与激光工程, 2012, 41(10):2694-2698. LIN Y H, CHEN Z Y, LI Y H, et al. Microstructure and hardness characteristic of in-situ synthesized TiB coating by laser cladding on TC4 titanium alloy[J]. Infrared and Laser Engineering, 2012, 41(10):2694-2698.
[9] TIAN Y S. Growth mechanism of the tubular TiB crystals in situ formed in the coatings laser-borided on Ti-6Al-4V alloy[J]. Materials Letters, 2010, 64:2483-2486.
[10] AN Q, HUANG L J, JIANG S, et al. Microstructure evolution and mechanical properties of TIG cladded TiB reinforced composite coating on Ti-6Al-4V alloy[J]. Vacuum, 2017, 145:312-319.
[11] AN Q, HUANG L J, JIAO Y, et al. Intergrowth microstructure and superior wear resistance of (TiB+TiC)/Ti64 hybrid coatings by gas tungsten arc cladding[J]. Materials & Design, 2019, 162:34-44.
[12] DAS M, BALLA V K, BASU D. Laser processing of in situ synthesized TiB-TiN-reinforced Ti6Al4V alloy coatings[J]. Scripta Materialia, 2012, 66:578-581.
[13] DAS M, BHATTACHARYA K, DITTRICK STANLEY A, et al. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings:microstructure, tribological and in-vitro biocompatibility[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29:259-271.
[14] BAO Y, HUANG LJ, AN Q, et al. Wire-feed deposition TiB reinforced Ti composite coating:formation mechanism and tribological properties[J]. Materials Letters, 2018, 229:221-224.
[15] BAO Y, HUANG LJ, AN Q, et al. Metal transfer and microstructure evolution during wire-feed deposition of TiB/Ti composite coating[J]. Journal of Materials Processing Technology, 2019, 274:116298.
[16] CHEN D Q, LIU D, LIU Y F, et al. Microstructure and fretting wear resistance of γ/TiC composite coating in situ fabricated by plasma transferred arc cladding[J]. Surface and Coatings Technology, 2014, 239:28-33.
[17] YU H L, ZHANG W, WANG H M, et al. In-situ synthesis of TiC/Ti composite coating by high frequency induction cladding[J]. Journal of Alloys and Compounds, 2017, 701:244-255.
[18] 于鹤龙,魏敏,张梦清,等. 感应熔覆原位TiC/Ti复合涂层的结构特征与纳米力学性能[J]. 中国表面工程, 2018, 31(5):150-157. YU H L, WEI M, ZHANG M Q, et al. Microstructure characteristics and nano mechanical properties of in-situ TiC/Ti composite coating by induction cladding[J]. Chinese Surface Engineering, 2018, 31(5):150-157.
[19] 吕维洁,张小农,张荻,等. 原位合成TiB/Ti基复合材料增强体的生长机制[J]. 金属学报, 2000, 36(1):104-108. LV W J, ZHANG X N, ZHANG D, et al. Growth mechanism of reinforcement in in-situ processed TiB/Ti composites[J]. Acta Metallurgica Sinica, 2000, 36(1):104-108.
[20] 吕维洁,张荻. 原位合成钛基复合材料的制备、微结构及力学性能[M].北京:高等教育出版社, 2005. LV W J, ZHANG D. Fabrication, microstructure and mechanical properties of in situ synthesized titanium matrix composites[M].Beijing:Higher Education Press, 2005.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[3] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[4] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[5] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[6] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[7] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[10] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[11] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[12] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[13] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[14] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[15] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn