Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (7): 111-118    DOI: 10.11868/j.issn.1001-4381.2019.000724
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能
张梦清1, 于鹤龙1,*(), 王红美1, 尹艳丽1, 魏敏2, 乔玉林3, 张伟2, 徐滨士1
1 陆军装甲兵学院 装备再制造技术国防科技重点实验室, 北京 100072
2 河北京津冀再制造产业技术研究院, 河北 河间 062450
3 陆军装甲兵学院 机械产品再制造国家工程研究中心, 北京 100072
Microstructure and mechanical properties of in -situ TiB reinforced Ti-based composite coating by induction cladding
Meng-qing ZHANG1, He-long YU1,*(), Hong-mei WANG1, Yan-li YIN1, Min WEI2, Yu-lin QIAO3, Wei ZHANG2, Bin-shi XU1
1 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
2 Hebei Jingjinji Institute of Remanufacturing Industry & Technology, Hejian 062450, Hebei, China
3 National Engineering Research Center for Mechanical Product Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
全文: PDF(4182 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用高频感应加热熔化(90%钛(原子分数,下同)+10%硼)预置涂层的方法在Ti6Al4V基体表面制备感应熔覆原位TiB增强Ti基复合涂层,利用扫描电镜、能谱仪、X射线衍射仪、显微硬度计和纳米压痕仪等研究复合涂层的显微结构、物相构成及微纳米力学性能。结果表明:感应熔覆钛基复合涂层表面光滑平整,内部无裂纹和孔隙,与基体形成良好的冶金结合;熔覆过程中Ti与B充分反应生成TiB增强相,涂层基质相由α-Ti和少量β-Ti构成。原位TiB增强体在涂层内部分布均匀,体积分数约为9.4%,纳米压痕硬度和弹性模量高达35 GPa和545 GPa。复合涂层的显微硬度达到525HV0.2,较Ti6Al4V基体材料提高了约67%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张梦清
于鹤龙
王红美
尹艳丽
魏敏
乔玉林
张伟
徐滨士
关键词 感应熔覆TiB原位合成钛基复合涂层力学性能    
Abstract

Induction cladding TiB/Ti composite coating was in-situ synthesized by induction heating the preplaced powder mixture of 90% Ti (atom fraction, the same below) and 10% boron on a Ti6Al4V substrate. The microstructure, phase composition and micro/nano mechanical properties of the coating were studied by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), microhardness tester and nanoindentation tester. The results indicate that the composite coating has a smooth surface and a dense microstructure without cracks and pores. A strong metallurgical adherence is formed between the coating and the substrate. During induction cladding process, B and Ti are fully reacted to in-situ form TiB reinforcements. The matrix of the coating consists of α-Ti phase and a few β-Ti phases. The reinforcements of in-situ synthesized TiB are uniformly distributed in the coating with a volume fraction about of 9.4%. Indentation hardness and modulus of the in-situ TiB particles are about 35 GPa and 545 GPa, respectively, which cause the increase of the microhardness of the composite coating to about 525HV0.2. It is increased by 67% as against the Ti6Al4V substrate.

Key wordsinduction cladding    TiB    in-situ synthesis    Ti matrix composite coating    mechanical property
收稿日期: 2019-08-06      出版日期: 2020-07-21
中图分类号:  TG174.44  
基金资助:国家重点研发计划(2017YFB0310703);国家重点研发计划(2017YFF0207905)
通讯作者: 于鹤龙     E-mail: helong.yu@163.com
作者简介: 于鹤龙(1979-), 男, 副研究员, 博士, 现主要从事表面新材料与摩擦学研究, 联系地址:北京市丰台区杜家坎21号陆军装甲兵学院(100072), E-mail:helong.yu@163.com
引用本文:   
张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
Meng-qing ZHANG, He-long YU, Hong-mei WANG, Yan-li YIN, Min WEI, Yu-lin QIAO, Wei ZHANG, Bin-shi XU. Microstructure and mechanical properties of in -situ TiB reinforced Ti-based composite coating by induction cladding. Journal of Materials Engineering, 2020, 48(7): 111-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000724      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/111
Fig.1  原料粉末的SEM照片与元素面分布图
(a)Ti粉; (b)B粉; (c)Ti/B混合粉末; (d)B在混合粉末中的面分布
Fig.2  感应熔覆前原料粉末和熔覆后复合涂层的XRD图谱
Fig.3  感应熔覆原位合成TiB/Ti复合涂层横截面的SEM照片
(a)涂层整体; (b)涂层表面; (c)涂层中部; (d)涂层/基体界面
Fig.4  感应熔覆原位合成TiB/Ti复合涂层原位增强相形貌
(a)气孔; (b)增强体纵截面; (c)六棱柱形增强体; (d)空心六棱柱形增强体; (e)多棱柱形增强体; (f)片状增强体
Fig.5  TiB/Ti复合涂层内部典型增强相的元素线扫描分析结果
(a)纤维状增强体; (b)空心管状增强体
Fig.6  TiB/Ti内部TiB增强体的TEM形貌(a)及选区电子衍射花样(b)
Fig.7  复合涂层内部基质相、原位TiB增强体以及Ti6Al4V基体的压痕硬度(a)和弹性模量(b)随压痕深度变化的关系曲线
Fig.8  原位TiB增强体纳米力学性能(a)载荷-深度变化曲线; (b)压痕硬度-深度变化曲线
Fig.9  复合涂层内部TiB增强体表面纳米压痕的SEM形貌
(a)TiB 1;(b)TiB 2;(c)TiB 3;(d)TiB 4
Fig.10  不同成分TiB/Ti复合涂层横截面显微硬度分布曲线
1 HO W , CHIANG T , WU S , et al. Mechanical properties and deformation behavior of cast binary Ti-Cr alloys[J]. Journal of Alloys and Compounds, 2009, 468, 533- 538.
doi: 10.1016/j.jallcom.2008.01.046
2 RABINOWICZ E . Friction properties of titanium and its alloys[J]. Metal Progress, 1954, 65 (2): 107- 110.
3 DONG H S . Surface engineering of light alloys[M]. Amsterdam: Elsevier, 2010.
4 李邦盛, 尚俊玲, 郭景杰, 等. 原位TiB/Ti复合材料的熔铸制备及其显微组织[J]. 材料研究学报, 2005, 19 (4): 375- 381.
4 LI B S , SHANG J L , GUO J J , et al. Microstructure of investment casting in-situ TiB/Ti composites[J]. Chinese Journal of Materials Research, 2005, 19 (4): 375- 381.
5 WU Y , WANG A H , ZHANG Z . Microstructure, wear resistance and cell proliferation ability of in situ synthesized Ti-B coating produced by laser alloying[J]. Optics and Laser Technology, 2015, 67, 176- 182.
doi: 10.1016/j.optlastec.2014.10.009
6 GORSSE S , PETITCORPS L Y , MATAR S , et al. Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite[J]. Materials Science and Engineering:A, 2003, 340, 80- 87.
doi: 10.1016/S0921-5093(02)00188-0
7 张杰, 翟瑾蕃. 原位生成TiBw/Ti复合材料的微观组织及高温压缩变形过程的演化规律[J]. 材料工程, 2002, (8): 11- 12.
7 ZHANG J , ZHAI J F . Microstructure of the in situ TiBw/Ti composite and its evolution during hot deformation[J]. Journal of Materials Engineering, 2002, (8): 11- 12.
8 林英华, 陈志勇, 李月华, 等. TC4钛合金表面激光熔覆原位制备TiB陶瓷涂层的微观组织特征与硬度特性[J]. 红外与激光工程, 2012, 41 (10): 2694- 2698.
doi: 10.3969/j.issn.1007-2276.2012.10.026
8 LIN Y H , CHEN Z Y , LI Y H , et al. Microstructure and hardness characteristic of in-situ synthesized TiB coating by laser cladding on TC4 titanium alloy[J]. Infrared and Laser Engineering, 2012, 41 (10): 2694- 2698.
doi: 10.3969/j.issn.1007-2276.2012.10.026
9 TIAN Y S . Growth mechanism of the tubular TiB crystals in situ formed in the coatings laser-borided on Ti-6Al-4V alloy[J]. Materials Letters, 2010, 64, 2483- 2486.
doi: 10.1016/j.matlet.2010.08.014
10 AN Q , HUANG L J , JIANG S , et al. Microstructure evolution and mechanical properties of TIG cladded TiB reinforced composite coating on Ti-6Al-4V alloy[J]. Vacuum, 2017, 145, 312- 319.
doi: 10.1016/j.vacuum.2017.09.019
11 AN Q , HUANG L J , JIAO Y , et al. Intergrowth microstructure and superior wear resistance of (TiB+TiC)/Ti64 hybrid coatings by gas tungsten arc cladding[J]. Materials & Design, 2019, 162, 34- 44.
12 DAS M , BALLA V K , BASU D . Laser processing of in situ synthesized TiB-TiN-reinforced Ti6Al4V alloy coatings[J]. Scripta Materialia, 2012, 66, 578- 581.
doi: 10.1016/j.scriptamat.2012.01.010
13 DAS M , BHATTACHARYA K , DITTRICK STANLEY A , et al. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings:microstructure, tribological and in-vitro biocompatibility[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 259- 271.
doi: 10.1016/j.jmbbm.2013.09.006
14 BAO Y , HUANG LJ , AN Q , et al. Wire-feed deposition TiB reinforced Ti composite coating:formation mechanism and tribological properties[J]. Materials Letters, 2018, 229, 221- 224.
doi: 10.1016/j.matlet.2018.07.022
15 BAO Y , HUANG LJ , AN Q , et al. Metal transfer and microstructure evolution during wire-feed deposition of TiB/Ti composite coating[J]. Journal of Materials Processing Technology, 2019, 274, 116298.
doi: 10.1016/j.jmatprotec.2019.116298
16 CHEN D Q , LIU D , LIU Y F , et al. Microstructure and fretting wear resistance of γ/TiC composite coating in situ fabricated by plasma transferred arc cladding[J]. Surface and Coatings Technology, 2014, 239, 28- 33.
doi: 10.1016/j.surfcoat.2013.11.012
17 YU H L , ZHANG W , WANG H M , et al. In-situ synthesis of TiC/Ti composite coating by high frequency induction cladding[J]. Journal of Alloys and Compounds, 2017, 701, 244- 255.
doi: 10.1016/j.jallcom.2017.01.084
18 于鹤龙, 魏敏, 张梦清, 等. 感应熔覆原位TiC/Ti复合涂层的结构特征与纳米力学性能[J]. 中国表面工程, 2018, 31 (5): 150- 157.
18 YU H L , WEI M , ZHANG M Q , et al. Microstructure characteristics and nano mechanical properties of in-situ TiC/Ti composite coating by induction cladding[J]. Chinese Surface Engineering, 2018, 31 (5): 150- 157.
19 吕维洁, 张小农, 张荻, 等. 原位合成TiB/Ti基复合材料增强体的生长机制[J]. 金属学报, 2000, 36 (1): 104- 108.
doi: 10.3321/j.issn:0412-1961.2000.01.023
19 LV W J , ZHANG X N , ZHANG D , et al. Growth mechanism of reinforcement in in-situ processed TiB/Ti composites[J]. Acta Metallurgica Sinica, 2000, 36 (1): 104- 108.
doi: 10.3321/j.issn:0412-1961.2000.01.023
20 吕维洁, 张荻. 原位合成钛基复合材料的制备、微结构及力学性能[M]. 北京: 高等教育出版社, 2005.
20 LV W J , ZHANG D . Fabrication, microstructure and mechanical properties of in situ synthesized titanium matrix composites[M]. Beijing: Higher Education Press, 2005.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn