Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 91-99    DOI: 10.11868/j.issn.1001-4381.2019.000725
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
5-异氰酸酯异肽酰氯/ZnO/超支化聚酰胺纳滤膜的制备及性能
张小广1, 邓慧宇1,2, 陈庆春1,2, 邦宇1, 晏乐安1, 那兵1,2
1. 东华理工大学 江西省聚合物微纳制造与器件重点实验室, 南昌 330013;
2. 东华理工大学 核资源与环境国家重点实验室, 南昌 330013
Preparation and characterization of 5-isocyanato-isophthaloyl chloride/ZnO/hyperbranched polyamide nanofiltration membranes
ZHANG Xiao-guang1, DENG Hui-yu1,2, CHEN Qing-chun1,2, BANG Yu1, YAN Le-an1, NA Bing1,2
1. Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, China;
2. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
全文: PDF(4689 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为获得大通量抗污染纳滤膜,通过5-异氰酸酯异肽酰氯(ICIC)与超支化聚酰胺(HBPA)在聚丙烯腈(PAN)超滤膜表面的界面聚合反应,将纳米氧化锌引入聚酰胺分离层制备ICIC/ZnO/HBPA纳滤膜。扫描电镜(SEM),X射线能谱分析证实ZnO的存在;接触角测试结果显示,引入ZnO后膜表面亲水性增强,最小接触角为22.7°。与未加ZnO相比,加入ZnO的膜通量增大了约2.6倍,为102 L·m-2·h-1,且对NaCl,MgCl2,Na2SO4和MgSO4的截留率提高。随着ZnO用量的增加,膜对大肠杆菌抑菌性增强。适当增大单体含量或延长界面聚合时间有利于提高膜对无机盐的截留率,但截留率顺序发生变化。当HBPA含量为0.8%(质量分数,下同)、ICIC含量为0.1%、ZnO用量为0.02 g、反应时间为10 min时,制备的纳滤膜对NaCl,MgCl2,Na2SO4和MgSO4的截留率分别为60.8%,96.4%,95.1%,96.7%,通量分别达到53,54.7,53.7 L·m-2·h-1和54.7 L·m-2·h-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张小广
邓慧宇
陈庆春
邦宇
晏乐安
那兵
关键词 ICICHBPAZnO纳滤膜通量界面聚合    
Abstract:In order to obtain high-flux antifouling nanofiltration membrane, a series of ICIC/ZnO/HBPA nanofiltration membranes were prepared by interfacial polymerization of 5-isocyanato-isophthaloyl chloride (ICIC) and hyperbranched polyamide (HBPA) on the surface of polyacrylonitrile (PAN) ultrafiltration membrane, the nano-ZnO was incorporated into the polyamide separation layer. The existence of ZnO is confirmed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The analysis results of water contact angle indicate that the membrane hydrophilicity is increased by incorporation of ZnO nanoparticles, the lowest water contact angle of the membrane is 22.7°. Compared with the membrane without ZnO, the flux and the salt rejection rate for NaCl, MgCl2, Na2SO4 and MgSO4 of the membrane containing ZnO increase. The largest flux of the ICIC/ZnO/HBPA membrane is about 102 L·m-2·h-1, which is nearly 2.6 times of the membrane without ZnO. The bacteriostasis of the membranes to E. coli is enhanced by incorporation more ZnO. Increasing the monomer content or prolonging the interfacial polymerization time is beneficial to increasing the salt rejection rate, but the order of the salt retention rate is changed. When HBPA is 0.8%, ICIC is 0.1%, content of ZnO is 0.02 g and reaction time is 10 min, the salt rejection rate for NaCl, MgCl2, Na2SO4 and MgSO4 of the prepared membrane are 60.8%, 96.4%, 95.1%, 96.7% and the flux is 53, 54.7, 53.7 L·m-2·h-1and 54.7 L·m-2·h-1, respectively.
Key wordsICIC    HBPA    ZnO    nanofiltration membrane    flux    interfacial polymerization
收稿日期: 2019-08-01      出版日期: 2020-05-28
中图分类号:  TQ028.8  
  TB317.9  
通讯作者: 邓慧宇(1973-),女,教授,博士,从事专业:高分子功能膜材料,联系地址:江西省南昌市经开区广兰大道418号东华理工大学化学生物与材料科学学院材料系(330013),E-mail:denghuiyu001@163.com     E-mail: denghuiyu001@163.com
引用本文:   
张小广, 邓慧宇, 陈庆春, 邦宇, 晏乐安, 那兵. 5-异氰酸酯异肽酰氯/ZnO/超支化聚酰胺纳滤膜的制备及性能[J]. 材料工程, 2020, 48(5): 91-99.
ZHANG Xiao-guang, DENG Hui-yu, CHEN Qing-chun, BANG Yu, YAN Le-an, NA Bing. Preparation and characterization of 5-isocyanato-isophthaloyl chloride/ZnO/hyperbranched polyamide nanofiltration membranes. Journal of Materials Engineering, 2020, 48(5): 91-99.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000725      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/91
[1] ZHAO K Y,ZHANG X X,WEI J F,et al.Calcium alginate hydrogel filtration membrane with excellent anti-fouling property and controlled separation performance[J].Journal of Membrane Science,2015,492:536-546.
[2] ZHANG X X,LIN B B,ZHAO K Y,et al.A free-standing calcium alginate/polyacrylamide hydrogel nanofiltration membrane with high anti-fouling performance:preparation and characterization[J].Desalination,2015,365:234-241.
[3] GUO J,ZHAO K Y,ZHANG X X,et al.Preparation and characterization of carboxyl multi-walled carbon nanotubes/calcium alginate composite hydrogel nano-filtration membrane[J].Materials Letters,2015,157:112-115.
[4] VIKTORIYA K,MYKOLA S,MIKHAIL M,et al.The violet luminescence band in ZnO and ZnO-Ag thin films[J].Journal of Luminescence,2019,213:519-524.
[5] SALEM M,AKIR S,MASSOUDI I,et al.Photoelectrochemical and optical properties tuning of graphene-ZnO nanocomposites[J].Journal of Alloys and Compounds,2018,767:982-987.
[6] JIAO W L,ZHANG L.Fabrication of new C/ZnO/ZnO composite material and their enhanced gas sensing properties[J].Materials Science in Semiconductor Processing,2018,86:63-68.
[7] LIN J,HUANG B,DAI Y F,et al.Chiral ZnO nanoparticles for detection of dopamine[J].Materials Science and Engineering:C, 2018,93:739-745.
[8] SON D B,JOON M B,LEE A,et al.Polarity effects of ZnO on charge recombination at CsPbBr3 nanoparticles/ZnO interfaces[J].Applied Surface Science,2019,483:165-169.
[9] KAARIAINEN M L,WEISS C K,RITZ S,et al.Zinc release from atomic layer deposited zinc oxide thin films and its antibacterial effect on Escherichia coli[J].Applied Surface Science,2013,287:375-380.
[10] SUDHEESH K P T,LAKAHMANANV K,RAJ M,et al.Eva-luation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage[J] Pharmaceutical Research,2013,30:523-537.
[11] HAYATI H N H,MOHAMMAD A W,HASSAN K A A.Influence of zinc oxide nanoparticles in the nanofiltration of hazardous Congo red dyes[J].Chemical Engineering Journal,2015,260:907-915.
[12] JUHOLIN P,KAARIAINEN M L,RIIHIMAKI M,et al.Comparison of ALD coated nanofiltration membranes to unmodifiedcommercial membranes in mine wastewater treatment[J].Separation and Purification Technology,2018,92:69-77.
[13] STEFAN B,ARCADIO S,PATRICIA L,et al.A new outlook on membrane enhancement with nanoparticles:the alternative of ZnO[J].Journal of Membrane Science,2012,389:155-161.
[14] ZANGENEH H,ZINATIZADEH A A,ZINDINI S,et al.Preparation ultrafine L-Methionine (C, N, S triple doped)-TiO2-ZnO nanoparticles and their photocatalytic performance for fouling alleviation in PES nanocomposite membrane[J].Composites Part B,2019,76(107158):1-11.
[15] EI-ARNAOUTY M B, ABDEL G A M,EID M,et al.Nano-modi- fication of polyamide thin film composite reverse osmosis membranes by radiation grafting[J].Journal of Radiation Research and Applied Sciences,2018,11:204-216.
[16] HEBA I.Development of thin-film composite membranes via radical grafting with methacrylic acid/ZnO doped TiO2 nanocomposites[J].Reactive and Functional Polymers,2018,131:400-413.
[17] LI H B,SHI W Y,ZHANG Y F,et al.Improved performance of poly (piperazineamide) composite nanofiltration membranes by adding aluminum hydroxide nanospheres[J].Separation and Purification Technology,2016,166:240-251.
[18] ZHAO F Y,JI Y L,WEN X D,et al.High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multi-walled carbon nanotubes[J].ACS Applied Materials & Interfaces,2016,8(10):6693-6700.
[19] MANSOR E S,JAMIL T S,ABDALLAH H,et al.Highly thin film nanocomposite membrane based metal organic complexes for brackish water desalination[J].Journal of Enviromental Chemical Engineering,2018,6(4):5459-5469.
[20] REVATHY R,VINISHA B,MATHAVA K,et al.Effect of ZnO morphology on GO-ZnO modified polyamide reverse osmosis membranes for desalination[J].Desalination,2019,467:245-256.
[21] AL-HOBAIB A S,GHOUL J E,GHILOUFI I,et al.Synthesis and characterization of polyamide thin-film nanocomposite membrane reached by aluminum doped ZnO nanoparticles[J].Materials Science in Semiconductor Processing,2016,42:111-114.
[22] VERISSIMO S,PEINEMANN K V,BORDADO J.Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes[J].Journal of Membrane Science,2006,279:266-275.
[23] 张峰,陈宇岳,张德锁,等.端氨基超支化聚合物及其季铵盐的制备与性能[J].高分子材料科学与工程,2009,25(8):141-144. ZHANG F,CHEN Y Y,ZHANG D S,et al.Preparation and properties of amino-terminated hyperbranched polymers and its quaternary ammonium salt[J].Polymer Materials Science and Engineering,2009,25(8):141-144.
[24] 刘立芬,徐德志,陈焕林,等.5-异氰酸酯-异肽酰氯的合成[J].化工进展,2013,32(1):184-187. LIU L F,XU D Z,CHEN H L,et al.Synthesis of 5-isocyanato-isophthaloyl chloride[J].Chemical Industry and Engineering Progress,2013,32(1):184-187.
[25] 陈培培,徐佳,蒋钰烨,等.新型抑菌Cu2+固载超滤膜的制备及性能表征[J].高等学校化学学报,2013,34(3):739-745. CHEN P P,XU J,JIANG Y Y,et al.Preparation and characte-rization of a novel anti-biofouling ultrafiltration membrane with Cu2+ immobilization[J].Chemical Journal of Chinese Universities,2013,34(3):739-745.
[26] TAN Z,CHEN S F,PENG X S,et al.Polyamide membranes with nanoscale Turing structures for water purification[J].Science, 2018,360(6388):518-521.
[1] 亓淑艳, 王德朋, 赵亚栋, 胥焕岩. 电气石/ZnO复合材料光催化机制[J]. 材料工程, 2019, 47(9): 145-151.
[2] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[3] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
[4] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
[5] 韩祥祥, 于思荣, 李好. 锌基体疏液表面的制备及润湿行为[J]. 材料工程, 2018, 46(3): 67-73.
[6] 刘涛, 赵小如, 蒋显武. 退火条件对Sn掺杂ZnO薄膜光电性能的影响[J]. 材料工程, 2017, 45(8): 19-23.
[7] 刘唱白, 刘丽, 刘星熠. Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性[J]. 材料工程, 2017, 45(2): 12-16.
[8] 段力民, 马建中, 吕斌, 鲁娟, 吴雄虎. 纳米ZnO/改性氢化蓖麻油复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 63-68.
[9] 芦佳, 王辉虎, 董一帆, 常鹰, 马新国, 董仕节. RGO/ZnO纳米棒复合材料的合成及光催化性能[J]. 材料工程, 2016, 44(12): 48-53.
[10] 鲍艳, 张永辉, 马建中. 溶液法制备ZnO纳米阵列的影响因素及光催化活性[J]. 材料工程, 2015, 43(8): 19-24.
[11] 喻胜飞, 罗武生. 石蜡/聚脲相变微胶囊的制备及表征[J]. 材料工程, 2015, 43(7): 100-104.
[12] 高党鸽, 陈琛, 吕斌, 马建中. 原位制备季铵盐聚合物/纳米ZnO复合抗菌剂[J]. 材料工程, 2015, 43(6): 38-45.
[13] 李文英, 钟建, 张柯, 汪元元, 尹桂林, 何丹农. 退火对ZnO/Cu/ZnO透明导电薄膜性能的影响[J]. 材料工程, 2015, 43(1): 44-48.
[14] 贺小文, 孟大维, 刘长珍, 余小红, 陈龙, 谢静. ZnO以及Fe掺杂ZnO的光学性质和室温铁磁性研究[J]. 材料工程, 2012, 0(12): 66-70.
[15] 董桂霖, 于萍, 李冰, 周宁宁, 陈祥俊, 秦占波, 张长桥. 聚氨酯材料包覆聚α-烯烃微胶囊的制备研究[J]. 材料工程, 2010, 0(7): 6-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn