Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 116-122    DOI: 10.11868/j.issn.1001-4381.2019.000742
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
7050铝合金第二相溶解行为
李亚1, 邓运来1,2, 张劲3,4, 田爱琴1,5, 张勇1
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 中南大学 轻质高强结构材料重点实验室, 长沙 410083;
3. 中南大学 轻合金研究院, 长沙 410083;
4. 中南大学 高性能复杂制造国家重点实验室, 长沙 410083;
5. 中车青岛四方机车车辆股份有限公司, 山东 青岛 266111
Dissolution behavior of second phases in 7050 aluminum alloy
LI Ya1, DENG Yun-lai1,2, ZHANG Jin3,4, TIAN Ai-qin1,5, ZHANG Yong1
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Science and Technology on High Strength Structural Materials Laboratory, Central South University, Changsha 410083, China;
3. Light Alloy Research Institute, Central South University, Changsha 410083, China;
4. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China;
5. CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, Shandong, China
全文: PDF(4133 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 研究热轧态7050铝合金在固溶过程中的平衡态η(MgZn2)相、T(Al2Mg3Zn3)相、S(Al2CuMg)相及含铁Al7Cu2Fe难溶相的溶解行为。采用原位扫描的组织检测方法获得上述平衡相的溶解动力学实测数据。在体扩散控制的溶解动力学模型基础上,引入曲率和界面反应对原子迁移速率的作用,建立η,T和S相溶解动力学模型。结果表明:在7050铝合金常规固溶温度(470℃)条件下,η和T相在2 min内即可完全溶解,S相保温较长的时间才能完全溶解,含Fe相不发生溶解;曲率对溶解行为影响较小,界面反应会大幅度降低溶解速率;本工作建立的η,T和S等第二相溶解动力学模型预测结果与实测结果吻合,能够为优化Al-Zn-Mg-Cu合金固溶工艺提供指导作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚
邓运来
张劲
田爱琴
张勇
关键词 7050铝合金固溶原子扩散动力学模型    
Abstract:The dissolution behavior of equilibrium η(MgZn2), T(Al2Mg3Zn3), S(Al2CuMg) and Fe-containing Al7Cu2Fe insoluble phases of hot rolled 7050 aluminum alloy during solid solution treatment was studied. The dissolution kinetics data of the equilibrium phases were obtained by means of in-situ scanning electron microscope tissue detection method. On the basis of bulk diffusion controlled dissolution kinetics models, the effects of curvature and interfacial reaction on atomic migration rate were introduced, and the dissolution kinetics models of η, T and S phases were established. The results show that η and T phases of 7050 aluminum alloy can be completely dissolved within 2 min at the usual solution temperature (470℃); it takes a long time for S phase to completely dissolve, while the Fe-containing phase hardly dissolves; the curvature has little effect on the phase dissolution, but the dissolution rate can be greatly reduced by the interfacial reaction. The predicted results of the second-phase dissolution kinetics models are in good agreement with the measured results, such as η, T and S phase, which can provide guidance for optimizing the solid solution process of Al-Zn-Mg-Cu alloy.
Key words7050 aluminum alloy    solid solution    atomic diffusion    kinetic model
收稿日期: 2019-08-09      出版日期: 2020-04-23
中图分类号:  TG151.1  
  TG156.1  
通讯作者: 张勇(1985-),男,副教授,博士,研究方向为铝合金材料与应用,联系地址:湖南省长沙市岳麓区中南大学校本部化学楼119室(410083),E-mail:yong.zhang@outlook.com     E-mail: yong.zhang@outlook.com
引用本文:   
李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
LI Ya, DENG Yun-lai, ZHANG Jin, TIAN Ai-qin, ZHANG Yong. Dissolution behavior of second phases in 7050 aluminum alloy. Journal of Materials Engineering, 2020, 48(4): 116-122.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000742      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/116
[1] 张新明,吴泽政,刘胜胆,等. 固溶处理对7A55铝合金局部腐蚀性能的影响[J]. 材料工程, 2014(4):26-33. ZHANG X M, WU Z Z, LIU S D, et al. Influence of solution heat treatment on localized corrosion of 7A55 aluminum alloy[J]. Journal of Materials Engineering, 2014(4):26-33.
[2] YANG Y, LI T R, JIA T, et al. Precipitation kinetics of complex precipitate in multicomponent systems[J]. Journal of Iron and Steel Research, International, 2018, 25(10):1086-1093.
[3] XU F S, GUO X B, WU P F, et al. Morphology development and kinetics of plate or rod shaped precipitates in aluminum alloys[J]. Rare Metal Materials and Engineering, 2017,46(4):876-881.
[4] FILBET F, SHU C W. Discontinuous Galerkin methods for a kinetic model of self-organized dynamics[J]. Mathematical Models and Methods in Applied Sciences, 2018, 28(6):1171-1197.
[5] KANG L,CUI Y J, ZHAO G,et al.Precipitation kinetics analysis of the cooling process following the solid solution treatment of 7B50 aluminum alloy[J].Materials Science Forum,2017,898:213-222.
[6] KONGTHEP J,JUIJERM P.Kinetics of precipitation hardening phase in aluminium alloy AA6110[J].Materials Science and Technology,2014,30(14):1815-1819.
[7] WHELAN M J. On the kinetics of precipitate dissolution[J]. Metal Science Journal, 1969, 3(1):95-97.
[8] CHA B, GALBRAITH S C, LIU H, et al. A thermodynamic balance model for liquid film drying kinetics of a tablet film coating and drying process[J]. AAPS Pharm SciTech, 2019, 20(5):209.
[9] LANG P, WOJCIK T, POVODEN-KARADENIZ E,et al.Thermo-kinetic prediction of metastable and stable phase precipitation in Al-Zn-Mg series aluminum alloys during non-isothermal DSC analysis[J].Journal of Alloys and Compounds,2014,609:129-136.
[10] 张蓉,曹秋芳,庞述先,等.Al-Si过共晶合金中初生硅的溶解动力学[J].中国有色金属学报,2000,10(1):89-91. ZHANG R, CAO Q F, PANG S X,et al.Dissolution kinetics of primary silicon for hypereutectic Al-Si alloy[J].The Chinese Journal of Nonferrous Metals,2000,10(1):89-91.
[11] 杨金龙,邓运来,祁小红,等.过饱和7050铝合金固溶体中第二相粒子的析出动力学[J].中南大学学报(自然科学版),2012,43(7):2528-2533. YANG J L, DENG Y L, QI X H,et al.Precipitation kinetics of second-phase particles in supersaturated solid solution of 7050 aluminum alloy[J].Journal of Central South University (Science and Technology),2012,43(7):2528-2533.
[12] MILKEREIT B, BECK M, REICH M,et al.Precipitation kinetics of an aluminum alloy during Newtonian cooling simulated in a differential scanning calorimeter[J].Thermochimica Acta,2011,522(1/2):86-95.
[13] BJØRNEKLETT B I,GRONGA Ø, MYHR O R,et al.Additivity and isokinetic behaviour in relation to particle dissolution[J].Acta Materialia,1998,46(17):6257-6266.
[14] KAMMERER C C, KULKARNI N S, WARMACK B,et al.Interdiffusion in ternary magnesium solid solutions of aluminum and zinc[J].Journal of Phase Equilibria and Diffusion,2016,37(1):65-74.
[15] HILL O F, BRICE J C. The composition of crystals of bismuth silicon oxide[J]. Journal of Materials Science,1974,9(8):1252-1254.
[16] 崔森林.Al合金扩散系数及微结构演变的模拟[D].长沙:中南大学,2012:125. CUI S L.Simulation of diffusion coefficients and microstructure evaluation in Al alloys[D].Changsha:Central South University,2012:125.
[1] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[2] 吴胜财, 罗弦, 龙永富, 张露, 徐本军, 黄润. 二氧化硅掺杂对二氧化钛晶型转变机理的影响[J]. 材料工程, 2020, 48(11): 99-107.
[3] 吴闪, 朱延俊, 赵梦媛, 解昊, 杨星, 边凌锋, 孟彬. Co元素掺杂对CeO2基固态电解质导电行为的影响[J]. 材料工程, 2018, 46(5): 133-138.
[4] 马超, 罗海文. GCr15轴承钢热处理过程中碳化物的析出与演变行为[J]. 材料工程, 2017, 45(6): 97-103.
[5] 张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
[6] 任魏巍, 邹林池, 张兴峰, 符殿宝, 陈俊锋. 7050铝合金时效成形中应力松弛行为与回弹方程[J]. 材料工程, 2016, 44(9): 89-95.
[7] 祁星, 宋仁国, 祁文娟, 金骥戎, 王超, 李海. pH值对7050铝合金膜致应力和应力腐蚀敏感性的影响[J]. 材料工程, 2016, 44(5): 86-92.
[8] 黄元春, 杜志勇, 肖政兵, 颜徐宇. Al-Ti-C和Al-Ti-B对7050铝合金微观组织与力学性能的影响[J]. 材料工程, 2015, 43(12): 75-80.
[9] 曹伟伟, 朱波, 朱文滔, 王永伟, 龙国荣. 基于非等温法的耐高温环氧树脂体系固化反应动力学研究[J]. 材料工程, 2014, 0(8): 67-71.
[10] 辛星, 张新明, 刘胜胆, 宋丰轩, 陈彬. 回归再时效中预时效温度对7050铝合金应力腐蚀性能的影响[J]. 材料工程, 2014, 0(5): 29-34.
[11] 张新明, 吴泽政, 刘胜胆, 冯迪, 欧阳惠, 王婷. 固溶处理对7A55铝合金局部腐蚀性能的影响[J]. 材料工程, 2014, 0(4): 26-33,39.
[12] 马秀萍, 李超. 铸造过热度和热处理对CoCrMo合金显微组织的影响[J]. 材料工程, 2014, 0(3): 66-70.
[13] 刘靖, 解国良, 张可. 高硼不锈钢复合板力学性能研究[J]. 材料工程, 2013, 0(6): 25-28,34.
[14] 李萍, 程向梅, 李安娜, 唐子乔. 304不锈钢固溶产物晶粒尺寸的超声无损表征研究[J]. 材料工程, 2013, 0(6): 77-81,86.
[15] 李卓然, 徐晓龙, 王征征. ZrB2-SiC钎焊接头界面产物及反应层生长规律[J]. 材料工程, 2013, 0(12): 44-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn