Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 59-68    DOI: 10.11868/j.issn.1001-4381.2019.000747
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳点在生物诊疗中的应用
邹漫, 陈叶青
五邑大学 应用物理与材料学院, 广东 江门 529020
Application of carbon dots in biological diagnosis and treatment
ZOU Man, CHEN Ye-qing
Applied Physics and Materials Institute, Wuyi University, Jiangmen 529020, Guangdong, China
全文: PDF(1746 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对于绝大多数癌症患者来说手术、放疗、化疗是不可避免的,但这些治疗方式对人体的副作用非常大。然而,荧光纳米材料具有荧光稳定性高、生物毒性低、良好的生物相容性等优点,最重要的是它可以通过自身的特点在人体病灶部位进行非侵入式的靶向治疗避免了以上疗法对人体带来的伤害。因此,荧光材料将在生物应用中显得尤为重要。作为一种新式碳纳米材料,碳点因其优异的光稳性、荧光性,良好的生物相容性,低毒性等特点而成为人们关注的焦点。可以应用于生物传感器、生物成像和生物诊疗方面。这篇综述将从碳点的制备、发光机制以及在生物方面的应用进行综述,重点介绍了碳点在生物诊疗方面的应用,探讨了碳点与特定靶向分子结合,形成检测荧光信号的碳点基探针,借助先进的光学成像技术,能够对细胞内及生物体内分子进行实时动态监测,对重大传染病源进行快速免疫荧光分析,为疾病的发生、诊断、治疗研究提供新技术和新方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹漫
陈叶青
关键词 碳点制备发光机制生物诊疗    
Abstract:Surgery, radiotherapy, and chemotherapy are inevitable for most cancer patients, but these treatments also cause great damage to the body of humans.However fluorescent nanomaterials have the advantages of high fluorescence stability, low biotoxicity, and good biocompatibility, the most important thing is that it can perform non-invasive targeted therapy through its own peculiarity to avoid the harm of the above therapy to the human body. Therefore, fluorescent materials will be particularly important in biological applications. As a new type of carbon nanomaterial, carbon dot has excellent light stability and fluorescence performance, good biocompatibility, low toxicity and so on,which can be applied to biosensors, bioimaging and biomedical applications. This review will express the preparation of carbon dots, the mechanism of luminescence and the application of biology, and focus on the application of carbon dots in biological diagnosis and treatment, and discusses the combination of carbon dots with specific targeting molecules to form carbons that detect fluorescent signals, by means of advanced optical imaging technology, which can perform real-time dynamic monitoring of intracellular and biological molecules, perform rapid immunofluorescence analysis of major infectious disease sources, and provide new technologies and methods for disease occurrence, diagnosis, and treatment research.
Key wordscarbon dots    preparation    luminescence mechanism    biological diagnosis and treatment
收稿日期: 2019-08-12      出版日期: 2020-09-17
中图分类号:  Q599  
通讯作者: 陈叶青(1985-),男,副教授,博士,研究方向:纳米光电材料,联系地址:广东省江门市蓬江区五邑大学应用物理与材料学院(529020),E-mail:yqchenwyu@126.com     E-mail: yqchenwyu@126.com
引用本文:   
邹漫, 陈叶青. 碳点在生物诊疗中的应用[J]. 材料工程, 2020, 48(9): 59-68.
ZOU Man, CHEN Ye-qing. Application of carbon dots in biological diagnosis and treatment. Journal of Materials Engineering, 2020, 48(9): 59-68.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000747      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/59
[1] 刘文,李婷婷,张冰,等.基于绿色天然物质合成荧光碳点及其性质和应用综述[J].材料导报,2019,33(2),402-409. LIU W,LI T T,ZHANG B, et al. A summary of synthesis of fluorescent carbon dots based on green natural matter and its properties and applications[J]. Materials Reports,2019,33(2):402-409.
[2] ZHU S, SONG Y, ZHAO X, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots,carbon nanodots and polymer dots):current state and future perspective[J]. Nano Res,2015,8:355-381.
[3] XU X, RAY R, GU Y. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J].Journal of the American Chemical Society,2015,126(40):12736.
[4] SUN Y P, ZHOU B, LIN Y. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24):7756-7757.
[5] CAO L, WANG X, MEZIANI M J, et al. Carbon dots for multiphoton bioimaging[J]. Journal of the American Chemical Society, 2007, 129(37):11318.
[6] HU S L, NIU K Y, SUN J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. Journal of Materials Chemistry, 2009, 19(4):484-488.
[7] YANG S T, WANG X, WANG H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. Journal of Physical Chemistry C, 2009, 113(42):18110.
[8] MING H,MA Z,LIU Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property[J].Dalton Trans,2012,41(31):9526-9531.
[9] VINCI J C, COLON L A. Fractionation of carbon-based nanomaterials by anion-exchange HPLC[J]. Analytical Chemistry, 2012, 84(2):1178-1183.
[10] LIU R, WU D, LIU S, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers[J]. Angew Chem Int Ed Engl, 2010, 48(25):4598-4601.
[11] ZONG J, ZHU Y, YANG X. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors[J]. Chemical Communications, 2010, 47(2):764-766.
[12] SHA Y, LOU J, BAI S. Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper(Ⅱ) ions[J]. Materials Research Bulletin, 2013, 48(4):1728-1731.
[13] LIU S, TIAN J, LEI W. Hydrothermal treatment of grass:a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(Ⅱ) ions[J]. Advanced Materials, 2012, 24(15):2037-2041.
[14] WANG L, ZHU S J, WANG H Y. Common origin of green luminescence in carbon nanodots and graphene quantum dots[J]. ACS Nano,2014,8:2541-2547.
[15] YANG Z C, WANG M, YONG A M. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate[J]. Chem Commun (Camb),2011,47:11615-11617.
[16] TAO H Q, YANG K, MA Z. In vivo NIR fluorescence imaging,biodistribution,and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small,2012,8:281-290.
[17] HU X, ZHANG X C, ZHAO Z, et al.The biological effects and environmental application of fluorescent carbon dots[J]. Scientia Sinica Chimica, 2016, 46(7):665-676.
[18] ZHU S, WANG L, ZHOU N, et al. The crosslink enhanced emission (CEE) in non-conjugated polymer dots:from the photoluminescence mechanism to the cellular uptake mechanism and internalization[J]. Chemical Communications, 2014, 50(89):13845-13848.
[19] DONG Y, PANG H, YANG H B, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angew Chem Int Ed Engl, 2013, 52(30):7800-7804.
[20] YUAN Y H, LIU Z X, LI R S, et al. Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states[J]. Nanoscale, 2016, 8(12):6770-6776.
[21] SHEN P F, XIA Y S. Synthesis-modification integration:one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing[J]. Anal Chem, 2014, 86:5323-5329.
[22] SHAN X Y, CHAI L J, MA J J. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection[J]. Analyst, 2014, 139:2322-2325.
[23] WEI J, REN J, LIU J. An eco-friendly, simple, and sensitive fluorescence biosensor for the detection of choline and acetylcholine based on C-dots and the Fenton reaction[J]. Biosensors & Bioelectronics, 2014, 52(4):304-309.
[24] LI H, ZHANG Y, WANG L. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform[J]. Chem Commun, 2010, 47:961-963.
[25] CHEN X X, JIN Q Q,WU L Z, et al. Synthesis and unique photoluminescene properties of nitrogen-rich quantum dots and their applications[J]. Angewandte Chemie,2014,53(1):12542-12548.
[26] 李迎运.新型近红外荧光分子探针的设计合成及其在细胞成像中的应用[D].合肥:中国科学技术大学,2017. LI Y Y.Design and synthesis of novel near infrared fluorescent molecular probes and their applications in cell imaging[D]. Hefei:University of Science and Technology of China,2017.
[27] MICHALET X, PINAUD F F, BENTOLILA L A, et al.Qu antumdots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005, 307(5709):538-544.
[28] 李亚丽,郭靖,宋娟,等.荧光碳点探针的合成、性质及其在生物成像中的应用[J]. 影像科学与光化学,2019,37(1):46-56. LI Y L,GUO J,SONG J, et al.Synthesis, properties of fluorescent carbon point probes and their applications in bioimaging[J].Imaging Science and Photochemisty,2019,37(1):46-56.
[29] LEVY S B, MARSHALL B. Antibacterial resistance worldwide:causes, challenges and responses[J]. Nat Med,2004, 10(Suppl):122-129.
[30] GAO W W, THAMPHIWATANA S, ANGSANTIKUL P. Nanoparticle approaches against bacterial infections[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol,2014, 6(6):532-547.
[31] RODRIGUEZ-ROJAS A, RODRIGUEZ-BELTRAN J, COUCE A. Antibiotics and antibiotic resistance:a bitter fight against evolution[J]. Int J Med Microbiol, 2013,303(6/7):293-297.
[32] BAI Y, WANG S J. YIN X. Factors associated with doctors' knowledge on antibiotic use in China[J]. Sci Rep, 2016, 6:23429.
[33] CHAMPION M M, WILLIAMS E A, KENNEDY G M. Direct detection of bacterial protein secretion using whole colony proteomics[J]. Mol Cell Proteomics,2012, 11(9):596-604.
[34] NANDI S, RITENBERG M, JELINEK R. Bacterial detection with amphiphilic carbon dots[J]. Analyst, 2015, 140(12):4232-4237.
[35] KASIBABU B S, D'SOUZA SL, JHA S. Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice[J]. J Fluoresc,2015, 25(4):803-810.
[36] 李婷, 张晓强, 张李冬,等. 碳点的生物成像研究进展[J]. 现代生物医学进展, 2016, 16(24):4798-4800. LI T,ZHANG X Q,ZHANG L D,et al. Progress in biological imaging of carbon dots[J]. Progress in Modern Biomedicine, 2016, 16(24):4798-4800.
[37] XU Y, JIA X H, YIN X B. Carbon quantum dot-stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging.[J]. Analytical Chemistry, 2014, 86(24):12122.
[38] LI L, LU C, LI S. A high-yield and versatile method for the synthesis of carbon dots for bioimaging applications[J]. Journal of Materials Chemistry B, 2017, 5(10):1935-1942.
[39] ZHENG M, LIU S, LI J. Integrating oxaliplatin with highly luminescent carbon dots:an unprecedented theranostic agent for personalized medicine[J]. Advanced Materials, 2014, 26(21):3554-3560.
[40] WANG Q, HUANG X, LONG Y. Hollow luminescent carbon dots for drug delivery[J]. Carbon, 2013, 59(4):192-199.
[41] ZHOU L, LI Z, LIU Z. Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging.[J]. Langmuir, 2013, 29(21):6396-6403.
[42] 徐龙华, 方国臻, 王硕. 碳点荧光探针在食品检测中的应用[J]. 食品研究与开发, 2017(12):202-206. XU L H,FANG G Z,WANG S. Application of carbon dot fluorescent probe in food detection[J]. Food Research and Development, 2017(12):202-206.
[43] KUMAR V,TOFFOLI G,RIZZOLIO F. Fluorescent carbon nanoparticles in medicine for cancer therapy[J]. ACS Med Chem Lett, 2013, 4:1012-1013.
[44] THAKUR M, PANDEY S, MEWADA A. Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity.[J]. Journal of Drug Delivery, 2014, 2014:282193.
[45] MEWADA A, PANDEY S, THAKUR M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging[J].Journal of Materials Chemistry B,2014,2(6):698-705.
[46] WANG C, WU C, ZHOU X. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots.[J]. Scientific Reports, 2013,3:2852.
[47] GONG X, ZHANG Q, GAO Y. Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging[J]. ACS Applied Materials & Interfaces, 2016, 8(18):11288.
[48] CHEN H, WANG Z, ZONG S. A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery[J]. Nanoscale, 2015, 7(37):15477-15486.
[49] WANG L, WANG X, BHIRDE A. Carbon-dot-based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA[J]. Advanced Healthcare Materials, 2014, 3(8):1203.
[50] LIU C, ZHANG P, ZHAI X. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials, 2012,33(13):3604-3613.
[51] PIERRAT P, WANG R, KERESELIDZE D. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers[J]. Biomaterials, 2015, 51:290-302.
[52] KIM J,PARK J,KIM H, et al. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA[J]. Biomaterials, 2013,34(29):7168-7180.
[53] GE J, LAN M, ZHOU B. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation[J]. Nature Communications, 2014, 5:4596.
[54] HU S H, CHEN Y W, HUNG W T. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ[J]. Advanced Materials, 2012, 24(13):1748-1754.
[55] BARRETO J A, O'MALLEY W, KUBEIL M. Nanomaterials:applications in cancer imaging and therapy[J]. Advanced Materials, 2011, 23(12):18-40.
[56] HANNAH A, LUKE G, WILSON K. Indocyanine green-loaded photoacoustic nanodroplets:dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging[J]. ACS Nano, 2014, 8(1):250-259.
[57] RUAN S, QIAN J, SHEN S. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging[J]. Nanoscale, 2014, 6(17):10040-10047.
[58] BECHET D, COULEAUD P, FROCHOT C. Nanoparticles as vehicles for delivery of photodynamic therapy agents[J]. Trends in Biotechnology, 2008, 26(11):612-621.
[59] HSU P C, CHEN P C, OU C M. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells[J]. Journal of Materials Chemistry B, 2013, 1(13):1774-1781.
[60] JAKUBOWICZ A. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy[J]. Biomaterials, 2015, 53(5):117-126.
[61] GE J, JIA Q, LIU W. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice[J]. Advanced Materials, 2015, 27(28):4169-4177.
[62] O'BRIEN-SIMPSON N M, HOLDEN J A, LENZO J C,et al. A therapeutic Porphyromonas gingivalis gingipain vaccine induces neutralising IgG1 antibodies that protect against experimental periodontitis[J]. NPJ Vaccines, 2016, 1(1):16022.
[63] YEAMAN M R, YOUNT N Y. Mechanisms of antimicrobial peptide action and resistance[J].Pharmacol Rev,2003,55:27-55.
[64] ZHANG S K, SONG J W, GONG F. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity[J]. Scientific Reports, 2016, 6(1):27394.
[65] HAN H M, GOPAL R, PARK Y. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties[J]. Amino Acids, 2016, 48(2):505-522.
[66] KILIAN M, CHAPPLE I L C, HANNIG M. The oral microbiome-an update for oral healthcare professionals[J]. British Dental Journal, 2016, 221(10):657-666.
[67] HIEKE C, KRIEBEL K, ENGELMANN R. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia[J]. Scientific Reports, 2016, 6(1):39096.
[68] LIU J, LU S, TANG Q. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against porphyromonas gingivalis[J]. Nanoscale, 2017, 9(21):7135.
[69] GUO X, WANG C F, YU Z Y. Facile access to versatile fluorescent carbon dots toward light-emitting diodes[J]. Chemical Communications, 2012, 48(21):2692-2694.
[70] GONÇALVES H M R, DUARTE A J, ESTEVES DASILVA J C G. Optical fiber sensor for Hg(Ⅱ) based on carbon dots[J]. Biosensors and Bioelectronics,2010,26(4):1302-1306.
[1] 徐晨曦, 胡安俊, 舒朝著, 龙剑平. 金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程, 2020, 48(9): 34-46.
[2] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[3] 刘兴华, 王军丽, 王亚玲, 张利, 杨永珍, 刘旭光. 多色荧光碳点调控及其应用[J]. 材料工程, 2020, 48(4): 36-45.
[4] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[5] 温敬运, 邱晓宇, 李明飞, 彭锋, 边静, 孙润仓. 半纤维素基水凝胶制备及应用研究进展[J]. 材料工程, 2020, 48(2): 1-10.
[6] 毕明刚, 张纪梅, 郝帅帅, 谢博尧. 硫醇保护的银簇制备及其荧光检测应用的进展[J]. 材料工程, 2020, 48(2): 11-21.
[7] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[8] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[9] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
[10] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
[11] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[12] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[13] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
[14] 李莹莹, 王昉, 刘其春, 张东敏, 张雪, 马青玉, 顾正桂. 丝素蛋白及其复合材料的研究进展[J]. 材料工程, 2018, 46(8): 14-26.
[15] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn