Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 166-172    DOI: 10.11868/j.issn.1001-4381.2019.000748
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测
栾建泽1, 那景新1, 谭伟1, 慕文龙1, 申浩1, 秦国锋2
1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022;
2. 广西师范大学 职业技术师范学院, 广西 桂林 541004
Mechanical properties and failure prediction of aluminum alloy-BFRP bonded joints under service high temperature aging
LUAN Jian-ze1, NA Jing-xin1, TAN Wei1, MU Wen-long1, SHEN Hao1, QIN Guo-feng2
1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
2. Teachers College for Vocational and Technical Education, Guangxi Normal University, Guilin 541004, Guangxi, China
全文: PDF(5395 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 选取50℃和80℃的高温老化环境,结合设计的测试夹具测得高温老化0,10,20,30天后铝合金-BFRP (玄武岩纤维增强树脂基复合材料)粘接接头在1 mm/min加载速率下的准静态抗拉强度与剪切强度,并对接头的失效断面进行宏观分析。结果表明:80℃高温老化后,胶黏剂发生后固化反应,力学性能增强,BFRP发生化学键断裂,玻璃化转变温度(Tg)降低;老化30天后,接头的抗拉强度下降,剪切强度上升;30天后拉伸接头失效断面出现分层,剪切接头出现胶层内聚与纤维撕裂的混合失效;50℃高温老化后,胶黏剂的力学性能略微上升,拉伸接头的失效强度变化不大,失效模式以纤维撕裂和分层为主;剪切接头的失效强度略微上升,失效模式以胶层内聚为主。根据二次应力准则对抗拉强度和剪切强度进行曲线拟合;根据响应面原理,建立失效准则随老化时间的响应面方程,用以对铝合金-BFRP粘接结构胶层的裂纹产生和扩展进行预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栾建泽
那景新
谭伟
慕文龙
申浩
秦国锋
关键词 铝合金玄武岩纤维增强树脂基复合材料粘接接头高温失效    
Abstract:50℃ and 80℃ high temperature aging environments were selected and the quasi-static tensile strength and shear strength of the aluminum alloy-BFRP (basalt fiber reinforced polymer composite) bonded joints aged for 0, 10, 20 and 30 days under high-temperature were measured at the loading rate of 1 mm/min with the designed testing fixture.The failure section of the joint was analyzed by macroscopical analysis.After 80℃ high temperature aging,post curing occurs in adhesive,the mechanical properties are enhanced. Chemical bond fracture occurs in BFRP, and glass transition temperature (Tg) is decreased. After aging for 30 days, the tensile strength of the joint is decreased and the shear strength is increased. After 30 days, the failure section of tensile joint appears to be stratified. Mixed failure of adhesive layer cohesion and fiber tear appears in the shear joint. After 50℃ high temperature aging, the mechanical properties of adhesive are slightly increased. The failure strength of the tensile joint changes little, and the failure mode is dominated by fiber tearing and delamination.The failure strength of shear joint is increased slightly, and the failure mode is mainly adhesive cohesive. According to the secondary stress criterion, the curves of tensile strength and shear strength were fitted.According to the response surface principle, the response surface equation of failure criterion with aging time was established to predict the crack generation and propagation of the adhesive layer of aluminum alloy-BFRP bonded structures.
Key wordsaluminum alloy    basalt fiber reinforced polymer composite    adhesive joint    high temper-ature    failure
收稿日期: 2019-08-12      出版日期: 2020-09-17
中图分类号:  U463.82  
通讯作者: 那景新(1957-),男,教授,博士生导师,研究方向为车身结构设计理论与轻量化技术,联系地址:吉林省长春市南关区吉林大学南岭校区汽车工程学院(130022),E-mail:najingxin@jlu.edu.cn     E-mail: najingxin@jlu.edu.cn
引用本文:   
栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
LUAN Jian-ze, NA Jing-xin, TAN Wei, MU Wen-long, SHEN Hao, QIN Guo-feng. Mechanical properties and failure prediction of aluminum alloy-BFRP bonded joints under service high temperature aging. Journal of Materials Engineering, 2020, 48(9): 166-172.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000748      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/166
[1] 马建,刘晓东,陈轶嵩,等.中国新能源汽车产业与技术发展现状及对策[J].中国公路学报,2018,31(8):1-19. MA J, LIU X D, CHEN Y S,et al. Current status and countermeasures for China's new energy automobile industry and technology development[J]. China Journal of Highway and Transport,2018,31(8):1-19.
[2] 肖志,杜庆勇,莫富灏,等.连续碳纤维增强复合材料汽车顶盖铺层优化[J].汽车工程,2017,39(6):722-728. XIAO Z, DU Q Y, MO F H, et al. Ply optimization on vehicle roof of continuous carbon fiber reinforced polymer[J]. Automotive Engineering, 2017,39(6):722-728.
[3] 秦国锋,那景新,慕文龙,等.高温老化对CFRP/铝合金粘接接头失效的影响[J].吉林大学学报(工学版),2019,49(4):1063-1071. QIN G F, NA J X, MU W L,et al. Degradation failure of adhesively bonded CFRP/aluminum alloy subjected to high temperature environment[J]. Journal of Jilin University (Engineeringand Technology Edition),2019,49(4):1063-1071.
[4] 马芳武,杨猛,蒲永锋,等. 混杂比对碳纤维-玄武岩纤维混杂增强环氧树脂基复合材料弯曲性能的影响[J]. 复合材料学报, 2019,36(2):362-369. MA F W, YANG M, PU Y F, et al. Effect of hybrid ratio on the flexural properties of carbon and basalt hybrid fibers reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2019, 36(2):362-369.
[5] MACHADO J J M, MARQUES E A S, DAILVA L F M. Mechanical behaviour of adhesively bonded composite single lap joints under quasi-static and impact conditions with variation of temperature and overlap[J]. Journal of Composite Materials, 2018, 52(26):3621-3635.
[6] VIANA G, COSTA M, BANEA M D, et al. A review on the temperature and moisture degradation of adhesive joints[J]. Proceedings of the Institution of Mechanical Engineers, 2017, 231(5):488-501.
[7] MARQUES E A S, DASILVA L F M, BANEA M D, et al. Adhesive joints for low-and high-temperature use:an overview[J]. The Journal of Adhesion, 2015, 91(7):556-585.
[8] PARK S Y, CHOI W J, CHOI C H, et al. The effect of curing temperature on thermal, physical and mechanical characteristics of two types of adhesives for aerospace structures[J]. Journal of Adhesion Science and Technology, 2018, 32(11):1200-1223.
[9] 张欢,许文,邹士文,等.环氧胶黏剂及其胶接界面热氧老化机理研究[J].材料导报,2017,31(12):104-108. ZHANG H, XU W, ZOU S W, et al. Thermal-oxidative aging mechanism of epoxy adhesive and its interface[J]. Materials Reports,2017,31(12):104-108.
[10] BANEA M D, DASILVA L F M, CAMPILHO R. Mode Ⅰ fracture toughness of adhesively bonded joints as a function of temperature:experimental and numerical study[J]. International Journal of Adhesion and Adhesives, 2011, 31(5):273-279.
[11] CAUSSE N,DANTRAS E, CLAIRE T, et, al. Environmental ageing of aerospace epoxy adhesive in bonded assembly configuration[J]. Journal of Thermal Analysis & Calorimetry, 2013, 114(2):621-628.
[12] HANCOX N L. Thermal effects on polymer matrix composites:part 1. thermal cycling[J]. Materials & Design, 1998, 19(3):85-91.
[13] SHIN P S, KIM J H, PARK H S,et al. Evaluation of thermally-aged carbon fiber/epoxy composites using acoustic emission, electrical resistance and thermogram[J]. Composite Structures, 2018,196,21-29.
[14] 宋健,温卫东. 考虑温度环境下树脂基复合材料力学性能及模型研究[J]. 航空动力学报, 2016,31(1):31-39. SONG J, WEN W D. Study on mechanical properties of resin composites and models considering temperature environment[J].Journal of Aerospace Power, 2016,31(1):31-39.
[15] OCAÑA R, ARENAS J M, ALÍA C, et al. Evaluation of degradation of structural adhesive joints in functional automotive applications[J]. Procedia Engineering, 2015, 132:716-723.
[16] PLAZEK D J,FRUND Z N. Epoxy resins (DGEBA):The curing and physical aging process[J]. Journal of Polymer Science:Part B, 1990, 28(4):431-448.
[17] BUDHE S, BANEAMD, BARROS S D, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion & Adhesives, 2017, 72:30-42.
[18] 秦国锋. 温湿老化对车用CFRP/铝合金粘接接头静态失效的影响[D].长春:吉林大学,2018. QIN G F. Effects of temperature and humidity on the static failure of adhesively bonded CFRP/aluminium alloy joints for automotive applications.[D].Changchun:Jilin University,2018.
[19] 栾建泽,那景新,谭伟,等.服役低温老化对铝合金-玄武岩纤维增强树脂复合材料粘接接头力学性能的影响及失效预测[J/OL].复合材料学报:1-9[2020-05-22].https://doi.org/10.13801/j.cnki.fhclxb.20191014.001. LUAN J Z, NA J X, TAN W, et al. Effect of service low-temperature aging on mechanical properties of aluminum alloy-basalt fiber reinforced polymer composite bonding joints and failure prediction[J/OL].Acta Materiae Compositae Sinica:1-9[2020-05-22].https://doi.org/10.13801/j.cnki.fhclxb.20191014.001.
[20] 那景新,浦磊鑫,范以撒,等.湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J].吉林大学学报(工学版),2018,48(5):1331-1338. NA J X, PU L X, FAN Y S, et al. Effect of temperature and humidity on the failure strength of Sikaflex-265 aluminum adhesive joints[J]. Journal of Jilin University(Engineering and Technology Edition),2018,48(5):1331-1338.
[1] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[2] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[3] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[4] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[5] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[6] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[7] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[8] 高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
[9] 王旭青, 彭子超, 罗学军, 马国君, 武丹. 时效制度对挤压+锻造工艺路线FGH95粉末高温合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 120-126.
[10] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[11] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[12] 安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
[13] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[14] 杨伸勇, 张丛春, 杨卓青, 李红芳, 姚锦元, 黄漫国, 汪红, 丁桂甫. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
[15] 黄敏, 张功, 王栋, 李辉, 董加胜, 楼琅洪. 复杂镍基单晶铸件显微孔洞的形成机理[J]. 材料工程, 2020, 48(2): 123-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn