Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (8): 134-141    DOI: 10.11868/j.issn.1001-4381.2019.000766
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
轧制方式对6016铝合金薄板组织和塑性各向异性的影响
段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧
北京科技大学 工程技术研究院, 北京 100083
Effect of rolling mode on microstructure and plastic anisotropy of 6016 aluminum alloy sheet
DUAN Xiao-ge, JIANG Hai-tao, MI Zhen-li, WANG Li-li, LI Xiao
Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(7141 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用凸耳实验、X射线衍射仪、EBSD等手段研究了热轧退火后常规轧制(NR)、横向轧制(TR)、交叉轧制(AR)等轧制方式对6016铝合金组织和平面各向异性的影响。结果表明:热轧退火后6016铝合金形成了强烈的立方织构{100}〈001〉。NR,TR冷轧板具有38%~44%的β取向线织构(主要包括铜,S,黄铜织构组分),但是AR冷轧后保留了12.2%的立方织构组分,变形织构组分很弱,因此AR冷轧板材制耳率最差,为7.1%。6016铝合金经过固溶处理后,NR,TR板形成9.12%强烈的立方织构,AR板的织构明显弱化且随机分布,因而AR再结晶退火板制耳率较NR,TR板的6%~8.16%明显降低,为2.76%。固溶处理后6016铝合金板的平均晶粒尺寸分别为23,25,22 μm,AR轧制后合金的晶粒最小且分布最均匀。因此交叉轧制能有效改善6016铝合金板再结晶退火后的组织均匀性和塑性各向异性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段晓鸽
江海涛
米振莉
王丽丽
李萧
关键词 6016铝合金轧制方式织构制耳率各向异性    
Abstract:The effect of rolling mode on microstructure and plastic anisotropy of the Al-Mg-Si alloy sheets was investigated by means of earing test, X-ray diffraction (XRD) and electron backscattered diffraction (EBSD) techniques. The samples were subjected to three cold rolling modes: normal rolling (NR), transverse rolling (TR) and alternate rolling (AR) after hot rolling and annealing treatment. The results show that a strong cube {100}〈001〉 texture is formed after hot rolling and annealing treatment of the 6016 aluminum alloy. While the deformation textures significantly vary with the cold rolling modes. A strong β-fiber textures (copper,S and brass components) is dominant in NR and TR rolled sheets,the volume fraction of which is 38%-44%. In contrast, a cube component with a volume fraction of 12.2% is retained in the AR samples, and the deformation texture component is very weak. Therefore, the AR rolled sheet has the worst earing ratio of 7.1%. After the solution heat treatment, the earing ratio of AR sheets is significantly reduced to 2.76% due to the weak and random texture. While the earing ratio of NR and TR sheets is 6% and 8.16%, due to the same volume fraction of 9.12% strong cube textures. The recrystallized grain sizes of the NR, TR and AR rolled sheets are 23,25 μm and 22 μm, and the grain distribution of the AR alloy is the most uniform. It is shown that alternate rolling can effectively improve the microstructure uniformity and plastic anisotropy of 6016 aluminum alloy recrystallization sheet.
Key words6016 aluminum alloy    rolling mode    texture    earing ratio    anisotropy
收稿日期: 2019-08-22      出版日期: 2020-08-15
中图分类号:  TG156  
通讯作者: 米振莉(1971-),女,研究员,博士,研究方向为汽车用钢和有色金属的品种开发及深加工,联系地址:北京市海淀区学院路30号北京科技大学工程技术研究院(100083),E-mail:zhenli_mi@163.com     E-mail: zhenli_mi@163.com
引用本文:   
段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
DUAN Xiao-ge, JIANG Hai-tao, MI Zhen-li, WANG Li-li, LI Xiao. Effect of rolling mode on microstructure and plastic anisotropy of 6016 aluminum alloy sheet. Journal of Materials Engineering, 2020, 48(8): 134-141.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000766      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/134
[1] 马鸣图,毕祥玉,游江海,等.铝合金汽车板性能及其应用的研究进展[J].机械工程材料,2010,34(6):1-5. MA M T, BI X Y, YOU J H, et al. Research progress of property and its application of aluminium alloy auto sheet[J]. Materials for Mechanical Engineering, 2010,34(6):1-5.
[2] 付锦,戚文军,李亚江,等.Al-Mg-Si系铝合金汽车车身板的研究进展[J].材料研究与应用,2016,10(3):159-166. FU J, QI W J, LI Y J, et al. Research and development of Al-Mg-Si alloys in application of automotive body panel[J]. Materials Research and Application, 2016,10(3):159-166.
[3] HIRSCH J. Automotive trends in aluminium-the european perspective[J]. Materials Forum, 2004,28(1):15-23.
[4] HIRSCH J. Aluminium alloys for automotive application[J]. Materials Science Forum, 1997,242:33-50.
[5] HIRSCH J. Rencent development in aluminium for automotive applications[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7):1995-2002.
[6] POGATSCHER S, ANTREKOWITSCH H, LEITNER H, et al. Mechanisms controlling the artificial aging of Al-Mg-Si alloys[J]. Acta Materialia, 2011,59(9):3352-3363.
[7] OZTURK F, ESENER E, TOROS S, et al. Effects of aging parameters on formability of 6061-O alloy[J]. Materials & Design, 2010,31(10):4847-4852.
[8] ZHONG H, ROMETSCH P A, WU X, et al. Influence of pre-ageing on the stretch formability of Al-Mg-Si automotive sheet alloys[J]. Materials Science and Engineering:A, 2017,697:79-85.
[9] BENNETT T A, SIDOR J, PETROV R H, et al. The effect of intermediate annealing on texture banding in aluminum alloy 6016[J]. Advanced Engineering Materials, 2010,12(10):1018-1023.
[10] BARNWAL V K, RAGHAVAN R, TEWARI A, et al. Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet[J]. Materials Science and Engineering:A, 2017,679:56-65.
[11] LIU W C, MORRIS J G. Effect of initial texture on the recrystallization texture of cold rolled AA 5182 aluminum alloy[J]. Materials Science and Engineering:A, 2005, 402:215-227.
[12] 彭祥阳,郭明星,汪小锋,等.不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响[J]. 金属学报,2015,51(2):169-177. PENG X Y, GUO M X, WANG X F, et al. Influence of particles with different sizes on microstructure, texture and mechanical properties of Al-Mg-Si-Cu series alloys[J]. Acta Metallurgica Sinica, 2015,51(2):169-177.
[13] WANG X, GUO M, CHAPUIS A, et al. The dependence of final microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheets on the intermediate annealing[J]. Materials Science and Engineering:A, 2015,633:46-58.
[14] ARZAGHI M, FUNDENBERGER J J, TOTH L S, et al. Microstructure, texture and mechanical properties of aluminum processed by high-pressure tube twisting[J]. Acta Materialia, 2012,60(11):4393-4408.
[15] HAN J H, SUH J, JEE K K, et al. Evaluation of formability and planar anisotropy based on textures in aluminum alloys processed by a shear deforming process[J]. Materials Science and Engineering:A, 2008, 477:107-120.
[16] SU L, LU C, GAZDER A A, et al. Shear texture gradient in AA6061 aluminum alloy processed by accumulative roll bonding with high roll roughness[J]. Journal of Alloys and Compounds, 2014,594(9):12-22.
[17] GURAO N P, SETHURAMAN S, SUWAS S. Effect of strain path change on the evolution of texture and microstructure during rolling of copper and nickel[J]. Materials Science and Engineering:A, 2011,528:7739-7750.
[18] GARG R, RANGANATHAN S, SUWAS S. Effect of mode of rolling on development of texture and microstructure in two-phase (α+β) brass[J]. Materials Science and Engineering:A, 2010,527:4582-4592.
[19] LIU Y S, KANG S B, KO H S. Texture and plastic anisotropy of Al-Mg-0.3Cu-l.0Zn alloys[J]. Scripta Materialia, 1997,37(4):411-417.
[20] HU J, ISHIKAWA T, IKEDA K. Analysis on earing behavior of textured pure aluminum and A5083 alloy sheets[J]. Journal of Materials Processing Tech, 1998,83(1):200-208.
[21] LIU Z S, ZHI Z P, WEI Z J. Effect of cold rolling reduction on recrystallization behaviors of AA5754 sheets in a short annealing time[J]. Materials Science Forum, 2018,913:11-17.
[22] ZHAO Z, MAO W, ROTERS F, et al. A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method[J]. Acta Materialia, 2004,52(4):1003-1012.
[23] SAMAJAR I, VERLINDEN B, RABET L, et al. Recrystallization texture in a cold rolled commercial purity aluminum:on the plausible macro-and micro-mechanisms[J]. Materials Science and Engineering:A, 1999,266(1):146-154.
[1] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[2] 赵泽军, 卢学鹏, 刘帅, 息剑峰, 李宝河. MgO/Pd底层对CoSiB/Pd多层膜垂直磁各向异性及热稳定性的影响[J]. 材料工程, 2020, 48(2): 65-70.
[3] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[4] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[5] 丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
[6] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[7] 储双杰, 沈侃毅, 沙玉辉, 陈曦. 无取向硅钢形变储能取向依赖性及其对再结晶织构的影响[J]. 材料工程, 2019, 47(8): 147-153.
[8] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[9] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[10] 童邵辉, 李东, 邓增辉, 方虎. 电子束快速成形TC4合金的组织与断裂性能[J]. 材料工程, 2019, 47(1): 125-130.
[11] 丁智平, 黄达勇, 荣继刚, 黄友剑, 曾家兴. 长玻纤增强复合材料注塑成型构件强度分析[J]. 材料工程, 2018, 46(4): 111-119.
[12] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[13] 刘恭涛, 刘志桥, 杨平, 毛卫民. 初次再结晶组织和渗氮量对低温渗氮取向硅钢二次再结晶行为的影响[J]. 材料工程, 2018, 46(1): 16-24.
[14] 李杰, 王超磊, 刘玉德, 高东明, 张会臣. 激光微织构与自组装对铝合金表面润湿性的影响[J]. 材料工程, 2018, 46(1): 53-60.
[15] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn