Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 158-165    DOI: 10.11868/j.issn.1001-4381.2019.000777
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
复合材料层压板分层缺陷相控阵超声检测参数优化方法
曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊
山东大学 控制科学与工程学院, 济南 250061
Parameter optimization method for delamination defects detection of composite laminate using phased array ultrasonic
CAO Hong-yi, JIANG Ming-shun, MA Meng-yuan, ZHANG Fa-ye, ZHANG Lei, SUI Qing-mei, JIA Lei
School of Control Science and Engineering, Shandong University, Jinan 250061, China
全文: PDF(4557 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对复合材料层压板分层缺陷的准确识别问题,通过仿真与实验提出相控阵超声检测激活孔径优化方法,研究并分析不同聚焦深度下激活孔径对声场特性和检测效果的影响。首先,针对相控阵超声接触式检测方法,推导出固固界面下的多点源三维声场模型;然后,对相控阵超声声场进行仿真,研究不同激活孔径下的声场特性;最后,采用热压工艺制备含分层缺陷的碳纤维增强树脂基复合材料(CFRP)层压板,并搭建相控阵超声检测系统对其进行检测。实验结果表明,通过对相控阵超声激活孔径进行优化选择,能够实现CFRP层压板分层缺陷的准确识别,有效提高缺陷检测精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹弘毅
姜明顺
马蒙源
张法业
张雷
隋青美
贾磊
关键词 复合材料相控阵超声激活孔径分层缺陷    
Abstract:Aiming at the problem of accurate identification of delamination defects of composite laminates, an optimization method of activation aperture of phased array ultrasonic testing was proposed by simulation and experiment, and the effects of the activation aperture on the acoustic field characteristics and detection results at different focusing depths were studied and analyzed. Firstly, for the phase array ultrasonic contact testing method, the multipoint source 3D acoustic field model under the solid-solid interface was deduced. Then, the phase array ultrasonic sound field was simulated, and the characteristics of sound field under different activation apertures were analyzed. Finally, the carbon fiber reinforced polymer (CFRP) laminate with delamination defects was prepared using autoclave process, and a phased array ultrasonic testing system was built to test the CFRP laminate test block. The experimental results show that the accurate identification of CFRP lamination defects can be achieved by optimizing the activation aperture of phased array ultrasound, and the defect detection accuracy can be improved effectively.
Key wordscomposite    phased array ultrasonic    activation aperture    delamination defect
收稿日期: 2019-08-27      出版日期: 2020-09-17
中图分类号:  TB553  
通讯作者: 姜明顺(1981-),男,教授,博士,研究方向为光电检测、故障检测与诊断、超声无损检测,联系地址:山东省济南市历下区经十路17923号山东大学千佛山校区控制科学与工程学院(250061),E-mail:jiangmingshun@sdu.edu.cn     E-mail: jiangmingshun@sdu.edu.cn
引用本文:   
曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
CAO Hong-yi, JIANG Ming-shun, MA Meng-yuan, ZHANG Fa-ye, ZHANG Lei, SUI Qing-mei, JIA Lei. Parameter optimization method for delamination defects detection of composite laminate using phased array ultrasonic. Journal of Materials Engineering, 2020, 48(9): 158-165.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000777      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/158
[1] 周正干,孙广开,李洋.先进无损检测技术在复合材料缺陷检测中的应用[J].航空制造技术, 2016, 59(4):28-35. ZHOU Z G, SUN G K, LI Y. Application of advanced nondestructive testing technologies for the detection of defects in composites[J]. Aeronautical Manufacturing Technology, 2016, 59(4):28-35.
[2] GHOLIZADEH S. A review of non-destructive testing methods of composite materials[J]. Procedia Structural Integrity, 2016, 1(1):50-57.
[3] 何方成,王铮,史丽军,等.复合材料制件拐角部位超声检测技术[J].材料工程,2011(7):80-84. HE F C, WANG Z, SHI L J, et al. Ultrasonic testing technique for the inspection of defects in the corner of composites[J]. Journal of Materials Engineering, 2011(7):80-84.
[4] 陈振华,黄智刚,王婵,等.超声相控阵检测声场的有限元仿真建模及其试验验证[J].电子测量与仪器学报,2018,32(2):48-55. CHEN Z H, HUANG Z G, WANG C, et al. Finite element modulation and its experimental verification on sound field of ultrasonic phased array testing[J]. Journal of Electronic Measurement and Instrument, 2018, 32(2):48-55.
[5] 温姣玲,卢超,何方成,等.航空复合材料层压板钻孔分层缺陷相控阵检测参数优化[J].玻璃钢/复合材料,2017,1(2):21-25. WEN J L, LU C, HE F C, et al. Research on optimal parameters of ultrasonic phased array detection of drilling-induced delamination in composite laminates[J]. Fiber Reinforced Plastics/Composites, 2017, 1(2):21-25.
[6] 王铮,何方成,梁菁,等.复合材料层板铺层方式对超声检测结果的影响[J].材料工程,2013(2):50-54. WANG Z, HE F C, LIANG J, et al. Influence of the orientation of laying-up in composite laminates on ultrasonic inspection[J]. Journal of Materials Engineering, 2013(2):50-54.
[7] 杨平华,林莉,刘春伟,等.相控阵超声检测横向分辨力实验测试及分析[J].仪器仪表学报,2011,32(6):1384-1389. YANG P H, LIN L, LIU C W, et al. Experimental measurement and analysis of the lateral resolution of phased array ultrasonic detection[J]. Chinese Journal of Scientific Instrument, 2011, 32(6):1384-1389.
[8] WANG T, ZHANG C, ALEKSOV A, et al. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers[J]. Ultrasonics, 2017, 76(Complete):35-43.
[9] SONG S J, KIM C H. Simulation of 3-D radiation beam patterns propagated through a planar interface from ultrasonic phased array transducers[J]. Ultrasonics, 2002,40:519-524.
[10] ZHAO X Y,GANG T. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers[J]. Ultrasonics, 2008, 49(1):126-130.
[11] 韩鹏,王召巴,陈友兴,等.多元高斯声束模型相控阵超声传感器声场仿真[J].传感器与微系统,2010,29(2):22-25. HAN P,WANG Z B,CHEN Y X,et al. Simulation of sound fields of phased array ultrasonic sensor based on multi-Gaussian beam model[J].Transducer and Microsystem Technologies,2010,29(2):22-25.
[12] ITO J, BIWA S, HAYASHI T, et al. Ultrasonic wave propagation in the corner section of composite laminate structure:numerical simulations and experiments[J]. Composite Structures,2015, 123(1):78-87.
[13] XU N, ZHOU Z G. Numerical simulation and experiment for inspection of corner-shaped components using ultrasonic phased array[J]. NDT & E International, 2014, 63(1):28-34.
[14] 孙芳,曾周末,王晓媛,等. 界面条件下线型超声相控阵声场特性研究[J]. 物理学报, 2011, 60(9):1-6. SUN F, ZENG Z M, WANG X Y, et al. Acoustic field characteristics of ultrasonic linear phased array for an interface condition[J]. Acta Physica Sinica, 2011, 60(9):1-6.
[15] 单宝华,李冬生,郭佳,等. 双层界面下非近轴近似多元高斯模型的相控阵声场模拟[J]. 声学学报, 2017,42(4):75-82. SHAN B H, LI D S, GUO J, et al. Radiation beam simulation of ultrasonic phased array based on a nonparaxial multi-Gaussian beam model with double interfaces[J]. Acta Acustica, 2017, 42(4):75-82.
[16] SU H M, LUO Z B, CAO H Q, et al. Focal law design for phased array ultrasonic testing of CFRP based on finite element modeling[C]//2016 IEEE Far East NDT New Technology & Application Forum (FENDT). IEEE, 2016.
[17] LIN L, CAO H Q, LUO Z B. Total focusing method imaging of multidirectional CFRP laminate with model-based time delay correction[J]. NDT & E International, 2018, 97(1):51-58.
[18] WRONKOWICZ A, DRAGAN K, LIS K. Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures[J]. Composite Structures, 2018, 203(1):71-84.
[19] SCHMERR JR L W. Fundamentals of ultrasonic nondestructive evaluation:a modeling approach[M]. New York:Plenum Press, 1998.
[20] SCHMERR L W Jr. Fundamentals of ultrasonic phased arrays[M]. New York:Springer, 2014.
[21] CERVENY V. Seismic ray theory[M]. Cambridge:Cambridge University Press, 2005.
[22] 徐娜,沙正骁,史亦韦.超声相控阵延迟时间的声速校正及在复合材料中的检测[J].材料工程,2015,43(9):74-79. XU N, SHA Z X, SHI Y W. Velocity correction of delay time and inspection for composite materials using ultrasonic phased array[J]. Journal of Materials Engineering, 2015, 43(9):74-79.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[3] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[4] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[5] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[6] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[7] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[8] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[9] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[10] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[11] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[12] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[13] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[14] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
[15] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn