Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 77-85    DOI: 10.11868/j.issn.1001-4381.2019.000819
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究
许文龙1, 陈爽1, 张津红2, 刘会娥1, 朱佳梦1, 刁帅1, 于安然1
1. 中国石油大学(华东)重质油国家重点实验室, 山东 青岛 266580;
2. 天津滨海新区大港油田, 天津 300280
Preparation and adsorption of carboxymethyl cellulose graphene composite aerogels
XU Wen-long1, CHEN Shuang1, ZHANG Jin-hong2, LIU Hui-e1, ZHU Jia-meng1, DIAO Shuai1, YU An-ran1
1. State Key Laboratory of Heavy Oil Processing, ChinaUniversity of Petroleum, Qingdao 266580, Shandong, China;
2. Dagang Oilfield, BinhaiNew Area, Tianjin 300280, China
全文: PDF(3080 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在氧化石墨的基础上添加适量廉价的羧甲基纤维素,以一步水热反应成功制备羧甲基纤维素/石墨烯复合气凝胶(CMC/GA),并对CMC/GA进行官能团结构、微观形貌等表征分析。以水中亚甲基蓝(MB)为吸附对象,研究CMC/GA对水中MB的吸附能力和吸附机制。结果表明:温度越高,MB溶液的初始浓度越大,对吸附越有利;吸附等温线符合Langmuir模型,吸附体系的活化能为57.951 kJ·mol-1,表明CMC/GA对MB的吸附为单分子层吸附且属于化学吸附。MB的吸附动力学符合准二级动力学模型;内扩散模型表明,CMC/GA对不同浓度MB的吸附过程均分为大孔扩散和微孔扩散两个阶段且大孔扩散速率明显大于微孔扩散。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许文龙
陈爽
张津红
刘会娥
朱佳梦
刁帅
于安然
关键词 羧甲基纤维素石墨烯气凝胶吸附复合材料    
Abstract:Cellulose graphene composite aerogels (CMC/GA) were prepared by one-step hydrothermal reaction based on graphite oxidation with the addition of low cost carboxymethyl cellulose. The functional group structure and microstructure of CMC/GA were characterized. The mechanism and capacity of the adsorption of Methylene Blue (MB) were investigated by CMC/GA in water. The results show that the higher temperature and higher initial concentration of MB are beneficial to the adsorption of CMC/GA. The adsorption isotherm is fitted with Langmuir model, the adsorption activation energy of the system is 57.951 kJ·mol-1, indicating that the adsorption of MB by CMC/GA is monolayer and belongs to chemical adsorption. The adsorption kinetics of MB is fitted with pseudo-second-order kinetics model. The intrapartical diffusion model of MB with different concentration shows that the adsorption process of CMC/GA for MB can be divided into two stages:macroporous diffusion and microporous diffusion, and the diffusion rate of macroporous diffusion is obviously higher than that of microporous diffusion.
Key wordscarboxymethyl cellulose    graphene    aerogel    adsorption    composites
收稿日期: 2019-09-06      出版日期: 2020-09-17
中图分类号:  TB332  
通讯作者: 陈爽(1973-),女,副教授,硕士,研究方向为新能源开发、材料化学等,联系地址:山东省青岛市黄岛区长江西路66号中国石油大学(华东)重质油国家重点实验室(266580),E-mail:chsh1030@163.com     E-mail: chsh1030@163.com
引用本文:   
许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
XU Wen-long, CHEN Shuang, ZHANG Jin-hong, LIU Hui-e, ZHU Jia-meng, DIAO Shuai, YU An-ran. Preparation and adsorption of carboxymethyl cellulose graphene composite aerogels. Journal of Materials Engineering, 2020, 48(9): 77-85.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000819      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/77
[1] BAO N, LI Y, WEI Z, et al. Adsorption of dyes on hierarchical mesoporous TiO2 fibers and its enhanced photocatalytic properties[J]. Journal of Physical Chemistry C, 2011, 115(13):5708-5719.
[2] WEI G, MIAO Y, ZHANG C, et al. Ni-doped graphene/carbon cryogels and their applications as versatile sorbents for water purification[J]. ACS Applied Materials & Interfaces, 2013, 5(15):7584-7591.
[3] WANG C, SHI Z H, PENG L, et al. Preparation of carbon foam-loaded nano-TiO2 photocatalyst and its degradation on methyl orange[J]. Surfaces & Interfaces, 2017, 7:116-124.
[4] KHALID N R, AHMED E, HONG Z L, et al. Graphene modified Nd/TiO2, photocatalyst for methyl orange degradation under visible light irradiation[J]. Ceramics International, 2013, 39(4):3569-3575.
[5] 刘湘粤,张宇,王晨,等. 亚铁盐制备高结晶度MIL-100(Fe)纳米材料及其光降解有机染料性能[J]. 材料工程, 2018, 46(10):127-134. LIU X Y, ZHANG Y, WANG C, et al. Highly crystalline MIL-100(Fe) nanoparticles prepared from ferrous salts and applications in photodegradation of organic dyes[J]. Journal of Materials Engineering, 2018, 46(10):127-134.
[6] SEN T K, AFROZE S, ANG H M. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of pinus radiata[J]. Water Air & Soil Pollution, 2010, 218(1/4):499-515.
[7] WENG C H, LIN Y T, TZENG T W. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder[J]. Journal of Hazardous Materials, 2009, 170(1):417-424.
[8] AI L, JIANG J. Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene-carbon nanotube hybrid[J]. Chemical Engineering Journal, 2012, 192(2):156-163.
[9] ZHAO J, REN W, CHENG H M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations[J]. Journal of Materials Chemistry, 2012, 22(38):20197-20202.
[10] 黄扬帆,刘会娥,马雁冰,等. 乳液法制备石墨烯气凝胶及其吸附水中亚甲基蓝[J]. 化工进展, 2018, 37(8):3092-3099. HUANG Y F, LIU H E, MA Y B, et al. Fabrication of graphene aerogels by emulsion method and their adsorption of methylene blue[J]. Chemical Industry and Engineering Progress, 2018, 37(8):3092-3099.
[11] ZHOU G, LI F, CHENG H M. Progress in flexible lithium batteries and future prospects[J]. Energy Environ Sci, 2014, 7(4):1307-1338.
[12] DONG G S, YEO H, KU B C, et al. A facile synthesis method for highly water-dispersible reduced graphene oxide based on covalently linked pyridinium salt[J]. Carbon, 2017, 121:17-24.
[13] PENG L, XU Z, LIU Z, et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications, 2015, 6:5716-5716.
[14] WAN C, LI J. Graphene oxide/cellulose aerogels nanocomposite:preparation, pyrolysis, and application for electromagnetic interference shielding[J]. Carbohydrate Polymers, 2016, 150:172-179.
[15] CHEN J, CHI F, HUANG L, et al. Synthesis of graphene oxide sheets with controlled sizes from sieved graphite flakes[J]. Carbon, 2016, 110:34-40.
[16] HAN Z, TANG Z, LI P, et al. Ammonia solution strengthened three-dimensional macro-porous graphene aerogel[J].Nanoscale,2013,5(12):5462-5467.
[17] LI Y, CHEN J, HUANG L, et al. "Pottery" of porous graphene materials[J]. Advanced Electronic Materials, 2015, 1(5):1-7.
[18] SUI Z, ZHANG X, LEI Y, et al. Easy and green synthesis of reduced graphite oxide-based hydrogels[J]. Carbon, 2011, 49(13):4314-4321.
[19] ZHANG Y, TAO B, XING W, et al. Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance[J]. Nanoscale, 2016, 8(15):7889-7898.
[20] 夏天明,王营茹,范鹏程,等. 改性稻壳吸附亚甲基蓝模拟废水试验研究[J]. 工业水处理, 2013, 33(3):47-50. XIA T M, WANG Y R, FAN P C, et al. Study on the adsorption of modified rice hull for methylene blue in simulated wastewater[J]. Industrial Water Treatment, 2013, 33(3):47-50.
[21] FERENCZI S, DEVENYI T. SnO2 quantum dots decorated silica nanoparticles for fast removal of cationic dye (methylene blue) from wastewater[J]. Chemical Engineering Journal, 2015, 281(4):482-490.
[22] BO Y, CHEN Z, LU C, et al. Fabrication of polyaniline hydrogel:synthesis, characterization and adsorption of methylene blue[J]. Applied Surface Science, 2015, 356:39-47.
[23] ZHANG C, CHEN Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite[J]. Journal of Hazardous Materials, 2011, 192(3):1515-1524.
[24] KAVITHA D, NAMASIVAYAM C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon[J]. Bioresour Technol, 2007, 98(1):14-21.
[25] SHENG J W, XIE Y N, ZHOU Y. Adsorption of methylene blue from aqueous solution on pyrophyllite[J]. Applied Clay Science, 2009, 46(4):422-424.
[26] YU D S, LV T T, CHEN G H, et al. Characteristics of ammonia adsorption and kinetics by nitrifying sludge immobilized pellets[J]. Environmental Science, 2019, 40(2):774-782.
[27] 葛梦妮,张建峰,曹惠杨,等. 剥离时间对二维Ti3C2吸附染料污染物性能的影响[J]. 材料工程, 2018, 46(7):144-150. GE M N, ZHANG J F, CAO H Y, et al. Effect of etching time on the adsorption performance of two-dimensional Ti3C2 for organic dyes[J]. Journal of Materials Engineering, 2018, 46(7):144-150.
[28] VASILIU S, BUNIA I, RACOVITA S, et al. Adsorption of cefotaxime sodium salt on polymer coated ion exchange resin microparticles:kinetics, equilibrium and thermodynamic studies[J]. Carbohydrate Polymers, 2011, 85(2):376-387.
[29] 王艳春,曾效舒,敖志强, 等. 热还原石墨烯的制备及其对重金属Pb2+的吸附性[J]. 材料工程, 2017, 45(10):6-11. WANG Y C, ZENG X S, AO Z Q, et al. Preparation of graphene via thermal reduction and its adsorption capacity for heavy metal Pb2+[J]. Journal of Materials Engineering, 2017, 45(10):6-11.
[30] MOHAMMAD M, MAITRA S, AHMAD N, et al. Metal ion removal from aqueous solution using physic seed hull[J]. Journal of Hazardous Materials, 2010, 179(1/3):363-372.
[31] WU C H. Adsorption of reactive dye onto carbon nanotubes:equilibrium, kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2007, 144(1):93-100.
[32] ELLATIF M A, IBRAHIM A M, ELKADY M. Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite[J]. The Journal of American Science, 2010, 6(6):267-283.
[33] AHMED, MUTHANNA J. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons:review[J]. Environ Toxicol Pharmacol, 2017, 50:1-10.
[1] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 冯志海, 师建军, 孔磊, 罗丽娟, 梁馨, 匡松连. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8): 14-24.
[6] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[7] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[8] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[9] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[10] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[11] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[12] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[13] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[14] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[15] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn