Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (6): 140-147    DOI: 10.11868/j.issn.1001-4381.2019.000842
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能
赵强1, 祝文卉1, 邵天巍1, 帅焱林1, 刘佳涛1, 王冉2, 张利3, 梁晓波4
1. 中国航发沈阳黎明航空发动机有限责任公司 技术中心, 沈阳 110043;
2. 东北大学 材料各向异性与织构教育部重点实验室, 沈阳 110819;
3. 沈阳航空航天大学, 沈阳 110136;
4. 钢铁研究总院, 北京 100081
Microstructure and mechanical properties of inertia friction welded joint of Ti-22Al-25Nb alloy
ZHAO Qiang1, ZHU Wen-hui1, SHAO Tian-wei1, SHUAI Yan-lin1, LIU Jia-tao1, WANG Ran2, ZHANG Li3, LIANG Xiao-bo4
1. Technology Center, AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang 110043, China;
2. Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China;
3. Shenyang Aerospace University, Shenyang 110136, China;
4. Central Iron & Steel Research Institute, Beijing 100081, China
全文: PDF(5558 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用惯性摩擦焊技术焊接Ti-22Al-25Nb合金,研究热处理前后焊接接头微观组织和显微硬度的变化,分析接头在650℃和750℃高温拉伸力学性能。结果表明:接头原始态焊合区由B2相和极少量残余α2相构成,热处理后焊合区由B2相和O相构成,O相由B2相直接相变产生,相变过程无成分变化。原始态焊合区的显微硬度高于母材,780℃/3 h热处理后焊合区的显微硬度陡升,大量析出的细小O相促进硬度升高,800℃/3 h热处理后焊合区显微硬度介于原始态和780℃/3 h热处理之间。高温拉伸断裂位置均位于母材区域,650℃拉伸断口微观形貌呈韧性断裂特征,断口存在较多浅而小的韧窝。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵强
祝文卉
邵天巍
帅焱林
刘佳涛
王冉
张利
梁晓波
关键词 Ti-22Al-25Nb合金惯性摩擦焊显微硬度微观组织    
Abstract:The Ti-22Al-25Nb alloy was welded by inertia friction welded technology. The micros-tructure and microhardness of welded joints before and after heat treatment were studied.The tensile mechanical properties at 650 ℃ and 750 ℃ of welded joints were analyzed. The results show that the weld zone of the as-welded joint consists of B2 phase and a very small amount of residual α2phase. After heat treatment, the weld zone consists of B2 phase and O phase. The O phase is transformed from B2 phase, and there is no composition change during the phase transition process. The microhardness of the as-welded zone is higher than that of the base material. After heat treatment at 780 ℃ for 3 h, the microhardness of the welded zone increases significantly due to the precipitation of fine O phase. But the microhardness of the welded zone with heat treatment at 800 ℃ for 3 h is between that of the as-welded state and the heat treatment at 780 ℃ for 3 h. The specimen of high temperature tensile fracture in the base material, and the tensile fracture morphology presents ductile fracture feature with many small shallow dimples.
Key wordsTi-22Al-25Nb alloy    inertia friction welding    microhardness    microstructure
收稿日期: 2019-09-16      出版日期: 2020-06-15
中图分类号:  TG456.9  
通讯作者: 赵强(1988-),男,工程师,硕士,从事惯性摩擦焊的研究工作,联系地址:辽宁省沈阳市大东区黎明航空发动机有限责任公司技术中心(110043), qiangzhao_1987@163.com     E-mail: qiangzhao_1987@163.com
引用本文:   
赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
ZHAO Qiang, ZHU Wen-hui, SHAO Tian-wei, SHUAI Yan-lin, LIU Jia-tao, WANG Ran, ZHANG Li, LIANG Xiao-bo. Microstructure and mechanical properties of inertia friction welded joint of Ti-22Al-25Nb alloy. Journal of Materials Engineering, 2020, 48(6): 140-147.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000842      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/140
[1] 蔡建明,曹春晓. 新一代 600 ℃高温钛合金材料的合金设计及应用展望[J]. 航空材料学报, 2014, 34(4): 27-36. CAI J M, CAO C X. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34(4): 27-36.
[2] 刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5. LIU D X. One generation of new material, one generation of new type engine: development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45(10): 1-5.
[3] 沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49(11): 1286-1294. SHEN J, FENG A H. Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys[J]. Acta Metallurgica Sinica, 2013, 49(11):1286-1294.
[4] 吴爱萍,李艳军,赵玥,等. Ti2AlNb合金电子束焊接接头的残余应力与再热裂纹[J]. 航空制造技术, 2018, 61(8): 26-35. WU A P, LI Y J, ZHAO Y, et al. Residual stresses and reheat cracking of Ti2AlNb electron beam welded joints[J]. Aeronautical Manufacturing Technology, 2018, 61(8): 26-35.
[5] 李万青,魏红梅,何鹏,等. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J]. 材料工程, 2015, 43(1): 37-43. LI W Q, WEI H M, HE P, et al. Interfacial microstructure and mechanical properties of diffusion bonding of Ti3Al and Ti2AlNb alloys[J]. Journal of Materials Engineering, 2015, 43(1): 37-43.
[6] 雷正龙,董志军,陈彦宾,等. 激光焊接热输入对Ti2AlNb合金组织性能的影响[J]. 稀有金属材料与工程, 2014, 43(3): 579-584. LEI Z L, DONG Z J, CHEN Y B, et al. Effect of heat input on the microstructures and mechanical properties of laser welded Ti2AlNb alloys[J]. Rare Metal Materials and Engineering, 2014, 43(3): 579-584.
[7] TAN L J, YAO Z K, ZHOU W, et al. Microstructure and properties of electron beam welded joint of Ti-22Al-25Nb/TC11[J]. Aerospace Science and Technology, 2010, 14(5): 302-306.
[8] LI P, JI X H, XUE K M. Diffusion bonding of TA15 and Ti2AlNb alloys: interfacial microstructure and mechanical properties[J]. Journal of Materials Engineering and Performance, 2017, 26(4): 1839-1846.
[9] CHEN Y B, ZHANG K Z, HU X, et al. Study on laser welding of a Ti-22Al-25Nb alloy: microstructural evolution and high temperature brittle behavior[J]. Journal of Alloys and Compounds, 2016, 681: 175-185.
[10] BOEHLERT C J. Part Ⅲ:the tensile behavior of Ti-Al-Nb O+ BCC orthorhombic alloys[J]. Metallurgical and Materials Transactions A, 2001, 32(8): 1977-1988.
[11] BOEHLERT C J, MAJUMDAR B S, SEETHARAMAN V, et al. Part Ⅰ:the microstructural evolution in Ti-Al-Nb O+BCC orthorhombic alloys[J]. Metallurgical and Materials Transactions A, 1999, 30(9): 2305-2323.
[12] 孟卫如,牛锐锋,王士元,等. TC4钛合金惯性摩擦焊接头温度场分析[J]. 焊接学报, 2004, 25(4): 111-114. MENG W R, NIU R F, WANG S Y, et al. Analysis of temperature field in TC4 titanium alloy inertia fraction welded joint[J]. Transactions of the China Welding Institution, 2004, 25(4): 111-114.
[13] 常川川,张田仓,李菊. Ti-22Al-27Nb合金线性摩擦焊接头组织与显微硬度分析[J]. 焊接学报, 2019, 40(3): 140-144. CHANG C C, ZHANG T C, LI J. Study on microstructure and microhardness of linear friction welded joints of Ti-22Al-27Nb alloy[J]. Transactions of the China Welding Institution, 2019, 40(3): 140-144.
[14] SHAO B, ZONG Y Y, WEN D S, et al. Investigation of the phase transformations in Ti-22Al-25Nb alloy[J]. Materials Characterization, 2016, 114: 75-78.
[15] WANG W, ZENG W D, LI D, et al. Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition[J]. Materials Science and Engineering: A, 2016, 662: 120-128.
[16] 张永刚,韩雅芳,陈国良. 金属间化合物结构材料[M]. 北京:国防工业出版社, 2001: 795-797. ZHANG Y G, HAN Y F, CHEN G L. Intermetallic compound structural materials[M]. Beijing: National Defense Industry Press, 2001: 795-797.
[17] MURALEEDHARAN K, NANDY T K, BANERJEE D, et al. Transformations in a Ti-24Al-15Nb alloy: part Ⅱ a composition invariant βo→ O transformation[J]. Metallurgical Transactions A, 1992, 23(2): 417-431.
[18] PATHAK A, SINGH A K. A first principles study of Ti2AlNb intermetallic[J]. Solid State Communications, 2015, 204: 9-15.
[19] KAZANTSEVA N V, DEMAKOV S L, POPOV A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. Ⅲ formation of transformation twins upon the B2→ O phase transformation[J]. The Physics of Metals and Metallography, 2007, 103(4): 378-387.
[20] MURALEEDHARAN K, GOGIA A K, NANDY T K, et al. Transformations in a Ti-24Al-15Nb alloy: part Ⅰ phase equilibria and microstructure[J]. Metallurgical Transactions A, 1992, 23(2): 401-415.
[21] CAI Q, LI M C, ZHANG Y R, et al. Precipitation behavior of Widmanstätten O phase associated with interface in aged Ti2AlNb-based alloys[J]. Materials Characterization, 2018, 145: 413-422.
[22] WANG W, ZENG W D, CHEN X, et al. Microstructural evolution, creep, and tensile behavior of a Ti-22Al-25Nb (at%) orthorhombic alloy[J]. Materials Science and Engineering: A, 2014, 603: 176-184.
[23] ZHANG T B, HUANG G, HU R, et al. Microstructural stability of long term aging treated Ti-22Al-26Nb-1Zr orthorhombic titanium aluminide[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8): 2549-2555.
[24] WANG W, ZENG W D, SUN Y L, et al. Microstructure, tensile, and creep behaviors of Ti-22Al-25Nb (at.%) orthorhombic alloy with equiaxed microstructure[J]. Materials, 2018, 11(7): 1244-1257.
[25] 王伟. 基于三种典型显微组织的Ti-22Al-25Nb合金力学性能研究[D]. 西安:西北工业大学, 2015. WANG W. Research on three typical microstructures and mechanical properties of Ti-22Al-25Nb alloy[D]. Xi’an:Northwestern Polytechnical University, 2015.
[26] HE Y S, HU R, LUO W Z, et al. Microstructural evolution and creep deformation behavior of novel Ti-22Al-25Nb-1Mo-1V-1Zr-0.2Si (at.%) orthorhombic alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 313-321.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[3] 林盼盼, 马典, 李昊岳, 王子鸣, 何鹏, 林铁松, 龙伟民. AlNP/Al复合材料与6061Al低温连接组织演变机理及力学性能[J]. 材料工程, 2020, 48(10): 133-140.
[4] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[5] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[6] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[9] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[10] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[11] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[12] 臧金鑫, 陈军洲, 伊琳娜, 汝继刚. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程, 2019, 47(12): 98-103.
[13] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[14] 李子夫, 邓运来, 张臻, 孙琳, 张议丹, 孙泉. 挤压比对Al-0.68Mg-0.60Si合金组织和性能的影响[J]. 材料工程, 2019, 47(10): 60-67.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn