Microstructure and mechanical properties of inertia friction welded joint of Ti-22Al-25Nb alloy
ZHAO Qiang1, ZHU Wen-hui1, SHAO Tian-wei1, SHUAI Yan-lin1, LIU Jia-tao1, WANG Ran2, ZHANG Li3, LIANG Xiao-bo4
1. Technology Center, AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang 110043, China;
2. Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China;
3. Shenyang Aerospace University, Shenyang 110136, China;
4. Central Iron & Steel Research Institute, Beijing 100081, China
Abstract:The Ti-22Al-25Nb alloy was welded by inertia friction welded technology. The micros-tructure and microhardness of welded joints before and after heat treatment were studied.The tensile mechanical properties at 650 ℃ and 750 ℃ of welded joints were analyzed. The results show that the weld zone of the as-welded joint consists of B2 phase and a very small amount of residual α2phase. After heat treatment, the weld zone consists of B2 phase and O phase. The O phase is transformed from B2 phase, and there is no composition change during the phase transition process. The microhardness of the as-welded zone is higher than that of the base material. After heat treatment at 780 ℃ for 3 h, the microhardness of the welded zone increases significantly due to the precipitation of fine O phase. But the microhardness of the welded zone with heat treatment at 800 ℃ for 3 h is between that of the as-welded state and the heat treatment at 780 ℃ for 3 h. The specimen of high temperature tensile fracture in the base material, and the tensile fracture morphology presents ductile fracture feature with many small shallow dimples.
[1] 蔡建明,曹春晓. 新一代 600 ℃高温钛合金材料的合金设计及应用展望[J]. 航空材料学报, 2014, 34(4): 27-36. CAI J M, CAO C X. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34(4): 27-36.
[2] 刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5. LIU D X. One generation of new material, one generation of new type engine: development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45(10): 1-5.
[3] 沈军,冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展[J]. 金属学报, 2013, 49(11): 1286-1294. SHEN J, FENG A H. Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys[J]. Acta Metallurgica Sinica, 2013, 49(11):1286-1294.
[4] 吴爱萍,李艳军,赵玥,等. Ti2AlNb合金电子束焊接接头的残余应力与再热裂纹[J]. 航空制造技术, 2018, 61(8): 26-35. WU A P, LI Y J, ZHAO Y, et al. Residual stresses and reheat cracking of Ti2AlNb electron beam welded joints[J]. Aeronautical Manufacturing Technology, 2018, 61(8): 26-35.
[5] 李万青,魏红梅,何鹏,等. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J]. 材料工程, 2015, 43(1): 37-43. LI W Q, WEI H M, HE P, et al. Interfacial microstructure and mechanical properties of diffusion bonding of Ti3Al and Ti2AlNb alloys[J]. Journal of Materials Engineering, 2015, 43(1): 37-43.
[6] 雷正龙,董志军,陈彦宾,等. 激光焊接热输入对Ti2AlNb合金组织性能的影响[J]. 稀有金属材料与工程, 2014, 43(3): 579-584. LEI Z L, DONG Z J, CHEN Y B, et al. Effect of heat input on the microstructures and mechanical properties of laser welded Ti2AlNb alloys[J]. Rare Metal Materials and Engineering, 2014, 43(3): 579-584.
[7] TAN L J, YAO Z K, ZHOU W, et al. Microstructure and properties of electron beam welded joint of Ti-22Al-25Nb/TC11[J]. Aerospace Science and Technology, 2010, 14(5): 302-306.
[8] LI P, JI X H, XUE K M. Diffusion bonding of TA15 and Ti2AlNb alloys: interfacial microstructure and mechanical properties[J]. Journal of Materials Engineering and Performance, 2017, 26(4): 1839-1846.
[9] CHEN Y B, ZHANG K Z, HU X, et al. Study on laser welding of a Ti-22Al-25Nb alloy: microstructural evolution and high temperature brittle behavior[J]. Journal of Alloys and Compounds, 2016, 681: 175-185.
[10] BOEHLERT C J. Part Ⅲ:the tensile behavior of Ti-Al-Nb O+ BCC orthorhombic alloys[J]. Metallurgical and Materials Transactions A, 2001, 32(8): 1977-1988.
[11] BOEHLERT C J, MAJUMDAR B S, SEETHARAMAN V, et al. Part Ⅰ:the microstructural evolution in Ti-Al-Nb O+BCC orthorhombic alloys[J]. Metallurgical and Materials Transactions A, 1999, 30(9): 2305-2323.
[12] 孟卫如,牛锐锋,王士元,等. TC4钛合金惯性摩擦焊接头温度场分析[J]. 焊接学报, 2004, 25(4): 111-114. MENG W R, NIU R F, WANG S Y, et al. Analysis of temperature field in TC4 titanium alloy inertia fraction welded joint[J]. Transactions of the China Welding Institution, 2004, 25(4): 111-114.
[13] 常川川,张田仓,李菊. Ti-22Al-27Nb合金线性摩擦焊接头组织与显微硬度分析[J]. 焊接学报, 2019, 40(3): 140-144. CHANG C C, ZHANG T C, LI J. Study on microstructure and microhardness of linear friction welded joints of Ti-22Al-27Nb alloy[J]. Transactions of the China Welding Institution, 2019, 40(3): 140-144.
[14] SHAO B, ZONG Y Y, WEN D S, et al. Investigation of the phase transformations in Ti-22Al-25Nb alloy[J]. Materials Characterization, 2016, 114: 75-78.
[15] WANG W, ZENG W D, LI D, et al. Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition[J]. Materials Science and Engineering: A, 2016, 662: 120-128.
[16] 张永刚,韩雅芳,陈国良. 金属间化合物结构材料[M]. 北京:国防工业出版社, 2001: 795-797. ZHANG Y G, HAN Y F, CHEN G L. Intermetallic compound structural materials[M]. Beijing: National Defense Industry Press, 2001: 795-797.
[17] MURALEEDHARAN K, NANDY T K, BANERJEE D, et al. Transformations in a Ti-24Al-15Nb alloy: part Ⅱ a composition invariant βo→ O transformation[J]. Metallurgical Transactions A, 1992, 23(2): 417-431.
[18] PATHAK A, SINGH A K. A first principles study of Ti2AlNb intermetallic[J]. Solid State Communications, 2015, 204: 9-15.
[19] KAZANTSEVA N V, DEMAKOV S L, POPOV A A. Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. Ⅲ formation of transformation twins upon the B2→ O phase transformation[J]. The Physics of Metals and Metallography, 2007, 103(4): 378-387.
[20] MURALEEDHARAN K, GOGIA A K, NANDY T K, et al. Transformations in a Ti-24Al-15Nb alloy: part Ⅰ phase equilibria and microstructure[J]. Metallurgical Transactions A, 1992, 23(2): 401-415.
[21] CAI Q, LI M C, ZHANG Y R, et al. Precipitation behavior of Widmanstätten O phase associated with interface in aged Ti2AlNb-based alloys[J]. Materials Characterization, 2018, 145: 413-422.
[22] WANG W, ZENG W D, CHEN X, et al. Microstructural evolution, creep, and tensile behavior of a Ti-22Al-25Nb (at%) orthorhombic alloy[J]. Materials Science and Engineering: A, 2014, 603: 176-184.
[23] ZHANG T B, HUANG G, HU R, et al. Microstructural stability of long term aging treated Ti-22Al-26Nb-1Zr orthorhombic titanium aluminide[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(8): 2549-2555.
[24] WANG W, ZENG W D, SUN Y L, et al. Microstructure, tensile, and creep behaviors of Ti-22Al-25Nb (at.%) orthorhombic alloy with equiaxed microstructure[J]. Materials, 2018, 11(7): 1244-1257.
[25] 王伟. 基于三种典型显微组织的Ti-22Al-25Nb合金力学性能研究[D]. 西安:西北工业大学, 2015. WANG W. Research on three typical microstructures and mechanical properties of Ti-22Al-25Nb alloy[D]. Xi’an:Northwestern Polytechnical University, 2015.
[26] HE Y S, HU R, LUO W Z, et al. Microstructural evolution and creep deformation behavior of novel Ti-22Al-25Nb-1Mo-1V-1Zr-0.2Si (at.%) orthorhombic alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 313-321.