Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 115-123    DOI: 10.11868/j.issn.1001-4381.2019.000851
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热挤压态Ni-Co-Cr基粉末高温合金热加工行为
李慧中1, 杨雷1, 王岩2, 谭钢1, 黄钲钦2, 刘敏学3
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 中南大学 航空航天学院, 长沙 410083;
3. 中南大学 粉末冶金国家重点实验室, 长沙 410083
Hot working behavior of hot-extruded Ni-Co-Cr-based powder metallurgy superalloy
LI Hui-zhong1, YANG Lei1, WANG Yan2, TAN Gang1, HUANG Zheng-qin2, LIU Min-xue3
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. School of Aeronautics and Astronautics, Central South University, Changsha 410083, China;
3. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
全文: PDF(5248 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用Gleeble-3500D型热模拟实验机进行等温压缩实验,系统研究一种新型热挤压态Ni-Co-Cr基粉末高温合金在变形温度为1020~1110℃、应变速率为10-3~1 s-1条件下的热压缩变形行为,对获得的流变应力曲线进行摩擦修正,利用摩擦修正后的数据分别建立合金的热压缩本构关系方程和考虑应变补偿的流变应力模型;同时,构建热加工图,并结合显微组织分析,优化合金的热变形工艺参数。结果表明:合金在热压缩过程中发生了明显的动态再结晶现象,流变应力随应变速率的降低或变形温度的升高而降低。利用所建立的考虑应变补偿的合金流变应力模型进行流变应力的预测,其预测值与实验摩擦修正值吻合良好。根据构建的热加工图并结合微观组织分析,提出了合金较合理的热加工参数:变形温度约为1076~1103℃、应变速率约为10-3~10-2.77s-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李慧中
杨雷
王岩
谭钢
黄钲钦
刘敏学
关键词 镍基粉末高温合金热压缩变形本构方程应变补偿热加工图    
Abstract:Isothermal compression tests were carried out on a Gleeble-3500D thermal simulation machine. The hot compression deformation behavior of a new hot-extruded Ni-Co-Cr-based powder metallurgy(P/M) superalloy at the temperatures from 1020℃ to 1110℃ with the strain rates from 10-3 s-1 to 1 s-1was systematically investigated. The flow stress curves were corrected by friction. Using the friction-corrected data, the constitutive equation for hot compression of the alloy and the flow stress model considering the strain compensation were established, respectively. At the same time, the hot processing map was built, and the hot deformation parameters of the alloy were optimized by combining with the analysis of the microstructure. The results show that apparently dynamic recrystallization occurs in the process of hot compression of the alloy, and the flow stress decreases with the decrease of strain rate or the increase of deformation temperature. The predicted values obtained from the developed flow stress model considering the strain compensation agree well with the experimentally friction-corrected data. According to the hot processing map and microstructural analysis, the reasonable hot working parameters of the alloy were suggested to be at the deformation temperatures of about 1076-1103℃ and the strain rates of about 10-3-10-2.77s-1.
Key wordsnickel-based P/M superalloy    hot compression deformation    constitutive equation    strain com-pensation    hot processing map
收稿日期: 2019-09-17      出版日期: 2020-09-17
中图分类号:  V256  
通讯作者: 王岩(1973-),女,教授,博士,从事航空航天材料的制备工艺优化、微观结构分析及性能评价等研究工作,联系地址:湖南省长沙市中南大学航空航天学院(410083),E-mail:wangyan@csu.edu.cn     E-mail: wangyan@csu.edu.cn
引用本文:   
李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
LI Hui-zhong, YANG Lei, WANG Yan, TAN Gang, HUANG Zheng-qin, LIU Min-xue. Hot working behavior of hot-extruded Ni-Co-Cr-based powder metallurgy superalloy. Journal of Materials Engineering, 2020, 48(9): 115-123.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000851      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/115
[1] 国为民,冯涤,吴剑涛,等.镍基粉末高温合金冶金工艺的研究与发展[J].材料工程,2002(3):44-48. GUO W M,FENG D,WU J T,et al.Research and development of P/M superalloy metallurgic techniques[J].Journal of Materials Engineering,2002(3):44-48.
[2] WANG Y,SHAO W Z,ZHEN L,et al.Hot deformation behavior of delta-processed superalloy 718[J].Materials Science and Engineering:A,2011,528(7/8):3218-3227.
[3] 齐欢.INCONEL 718(GH4169)高温合金的发展与工艺[J].材料工程,2012(8):92-100. QI H.Review of INCONEL 718 alloy:its history,properties,processing and developing substitutes[J].Journal of Materials Engineering,2012(8):92-100.
[4] TAN L M,LI Y P,HE G A,et al.Optimized hot workability of a powder metallurgy nickel-base superalloy[J].Materials Characterization,2019,147:340-352.
[5] WU K,LIU G Q,HU B F,et al.Effect of processing parameters on hot compressive deformation behavior of a new Ni-Cr-Co based P/M superalloy[J].Materials Science and Engineering:A,2011,528(13/14):4620-4629.
[6] NIE L,ZHANG L W,ZHU Z,et al.Constitutive modeling of dynamic recrystallization kinetics and processing maps of solution and aging FGH96 superalloy[J].Journal of Materials Engineering and Performance,2013,22(12):3728-3734.
[7] 刘建涛,张义文,陶宇,等.FGH96合金动态再结晶行为的研究[J].材料热处理学报,2006,27(5):46-50. LIU J T,ZHANG Y W,TAO Y,et al.Investigation on dynamic recrystallization of FGH96 powder metallurgy superalloy[J].Transactions of Materials and Heat Treatment,2006,27(5):46-50.
[8] 王超渊,东赟鹏,王淑云,等.挤压态镍基粉末高温合金热变形行为与组织研究[J].锻压技术,2014,39(4):126-132. WANG C Y,DONG Y P,WANG S Y,et al.Study on hot defor-mation behavior and microstructure characteristics of extruded Ni-base powder metallurgy superalloy[J].Forging and Stamping Technology,2014,39(4):126-132.
[9] 杨川,刘小涛,司家勇,等.粉末冶金高温合金FGH96的热加工图及热压缩变形过程的开裂行为[J].中国有色金属学报,2015,25(10):2707-2719. YANG C,LIU X T,SI J Y,et al.Processing map and cracking behavior of powder metallurgy superalloy FGH96 during hot compression[J].The Chinese Journal of Nonferrous Metals,2015,25(10):2707-2719.
[10] 侯琼,陶宇,贾建.第四代粉末高温合金热变形后的"项链"组织[J].材料工程,2019,47(3):94-100. HOU Q,TAO Y,JIA J."Necklace" structure of the 4th generation powder metallurgy superalloy after hot deformation[J].Journal of Materials Engineering,2019,47(3):94-100.
[11] EBRAHIMI R,NAJAFIZADEH A.A new method for evaluation of friction in bulk metal forming[J].Journal of Materials Processing Technology,2004,152(2):136-143.
[12] 王岩,徐芳泓,曾莉,等.700℃(A-USC)锅炉材料617B镍基高温合金热变形及持久行为[J].材料工程,2018,46(7):100-105. WANG Y,XU F H,ZENG L,et al.Hot deformation and creep rupture behaviors of 617B nickel-base superalloy for 700℃ (A-USC) boilers[J].Journal of Materials Engineering,2018,46(7):100-105.
[13] ZENER C,HOLLOMON J H.Effect of strain rate upon the plastic flow of steel[J].Applied Physics,1944,15(1):22-27.
[14] 王博,易丹青,丁学锋,等.FGH4169合金的高温变形行为[J].中南大学学报(自然科学版),2013,44(11):4408-4415. WANG B,YI D Q,DING X F,et al.Hot deformation behavior of FGH4169 superalloy[J].Journal of Central South University(Science and Technology),2013,44(11):4408-4415.
[15] BI Z N,ZHANG M C,DONG J X,et al.A new prediction model of steady state stress based on the influence of the chemical composition for nickel-base superalloys[J].Materials Science and Engineering:A,2010,527(16/17):4373-4382.
[16] PRASAD Y V R K,GEGEL H L,DORAIVELU S M,et al.Modeling of dynamic material behavior in hot deformation for-ging of Ti-6242[J].Metall Mater Trans A,1984,15(10):1883-1892.
[17] 朱怀沈,聂义宏,赵帅,等.镍基617合金动态再结晶微观组织演变与预测[J].材料工程,2018,46(6):80-87. ZHU H S,NIE Y H,ZHAO S,et al.Microstructure evolution and prediction of alloy 617 during hot deformation based on dynamic recrystallization[J].Journal of Materials Engineering,2018,46(6):80-87.
[1] 孙挺, 闫永明, 何肖飞, 尉文超, 杜玉婧. Cr-Mo-B系机械工程用钢高温流变行为及热加工图[J]. 材料工程, 2019, 47(9): 55-60.
[2] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[3] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[4] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[5] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[6] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[7] 杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
[8] 王忠军, 付学丹, 朱晶, 周乐, 王洪斌. ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3): 102-111.
[9] 程明阳, 郝世明, 谢敬佩, 王爱琴, 马窦琴, 孙亚丽. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23.
[10] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[11] 谢碧君, 郭逸丰, 徐斌, 孙明月, 李殿中. GH984G18合金热加工图及再结晶图研究[J]. 材料工程, 2016, 44(9): 16-23.
[12] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[13] 仇琍丽, 高文理, 陆政, 冯朝辉. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39.
[14] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[15] 刘延辉, 姚泽坤, 宁永权, 郭鸿镇. 生物医用TC20钛合金高温变形行为及本构关系[J]. 材料工程, 2014, 0(7): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn