Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 152-157    DOI: 10.11868/j.issn.1001-4381.2019.000865
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能
张成林1, 董抒华1, 李丽君2, 田龙雨1, 谭洪生1
1. 山东理工大学 材料科学与工程学院, 山东 淄博 255049;
2. 山东理工大学 交通与车辆工程学院, 山东 淄博 255049
Curing kinetic and dynamic thermodynamic properties of E-glass fiber/epoxy resin prepreg
ZHANG Cheng-lin1, DONG Shu-hua1, LI Li-jun2, TIAN Long-yu1, TAN Hong-sheng1
1. College of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China;
2. College of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
全文: PDF(2454 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为得到E-玻纤/环氧树脂预浸料的固化反应温度参数,对该预浸料进行DSC分析,利用Kissinger和Crane方程求得该预浸料的唯象型n级反应固化动力学参数,并通过T-β外推法得出了该预浸料的最佳固化温度,建立了预浸料的唯象固化动力学模型。采用模压工艺制得单层板及[0]10层合板,通过动态热机械分析仪(DMA)研究层合板的动态热力学性能。结果表明:该预浸料的固化反应表观活化能为87.8 kJ/mol,反应级数为0.93;层合板的玻璃化转变温度Tg为130~133℃,[0]10层合板的损耗因子tanδ高于单层板。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张成林
董抒华
李丽君
田龙雨
谭洪生
关键词 固化动力学预浸料玻纤/环氧树脂动态热力学    
Abstract:In order to obtain the curing reaction temperature parameters of E-glass fiber/epoxy resin prepreg, DSC was carried out. Kissinger and Crane equations were used to obtain the phenomenological nth-order reaction curing kinetic parameters of the prepreg. The optimal curing temperature of the prepreg was obtained by T-β extrapolation method, and the phenomenological curing kinetic model of the prepreg was established. Monolayer board and laminate of[0]10 were prepared by molding process. The dynamic thermodynamic properties of the prepreg were studied by dynamic mechanical analysis (DMA). The results show that the apparent activation energy and the reaction order of the prepreg are 87.8 kJ/mol and 0.93, respectively. The glass transition temperature Tg of the laminates is 130-133℃. The loss factor tanδ of[0]10 laminate is higher than that of monolayer board.
Key wordscuring kinetics    prepreg    glass fiber/epoxy resin    dynamic thermodynamics
收稿日期: 2019-09-22      出版日期: 2020-09-17
中图分类号:  TB332  
通讯作者: 董抒华(1975-),女,副教授,博士,研究方向为先进树脂基复合材料的制备及应用,联系地址:山东理工大学西校区材料学院(255049),E-mail:dongshuhua@sdut.edu.cn     E-mail: dongshuhua@sdut.edu.cn
引用本文:   
张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
ZHANG Cheng-lin, DONG Shu-hua, LI Li-jun, TIAN Long-yu, TAN Hong-sheng. Curing kinetic and dynamic thermodynamic properties of E-glass fiber/epoxy resin prepreg. Journal of Materials Engineering, 2020, 48(9): 152-157.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000865      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/152
[1] 邓富泉,张丽,刘少祯,等. 单向连续碳纤维-玻璃纤维层间混杂增强环氧树脂基复合材料的力学性能[J]. 复合材料学报, 2018, 35(7):1857-1863. DENG F Q, ZHANG L, LIU S Z, et al. Mechanical properties of unidirectional carbon fiber-glass fiber hybrid reinforced epoxy composites in interlaminar layer[J]. Acta Materiae Compositae Sinica, 2018, 35(7):1857-1863.
[2] 阮班超,史同亚,王永刚. E玻璃纤维增强环氧树脂基复合材料轴向拉伸力学性能的应变率效应[J]. 复合材料学报, 2018, 35(10):2715-2722. RUAN B C, SHI T Y, WANG Y G. Influence of strain rate on tensile mechanical behavior of E glass fiber reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2018, 35(10):2715-2722.
[3] 张丹丹,孙耀宁,王雅. 多轴向玻纤增强树脂基复合材料的破坏特性与损伤机制[J]. 复合材料学报, 2017, 34(2):381-388. ZHANG D D, SUN Y N, WANG Y. Failure behavior and damage mechanism of multiaxial glass fiber reinforced resin matrix composites[J]. Acta Materiae Compositae Sinica, 2017, 34(2):381-388.
[4] 曾少华,申明霞,段鹏鹏,等. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9):38-44. ZENG S H, SHEN M X, DUAN P P, et al. Structure and property of carbon nanotubes attached glass fabric reinforced epoxy composites[J]. Journal of Materials Engineering, 2017, 45(9):38-44.
[5] GANAPATHI A S, MAHESHWARI M, JOSHI S C, et al. In-situ measurement and numerical simulation of resin pressure during glass/epoxy prepreg composite manufacturing[J]. Measurement, 2016, 94:505-514.
[6] KE J, WU Z Y, CHEN X Y, et al. A review on material selection, design method and performance investigation of composite leaf springs[J]. Composite Structures, 2019, 226:111277.
[7] SURESHKUMAR M, TAMILSELVAM P, KUMARAVELAN R, et al. Design, fabrication and analysis of a hybrid fiber composite mono-leaf spring using carbon and E-glass fibers for automotive suspension applications[J]. Mechanics of Composite Materials, 2014, 50(1):115-122.
[8] SUBRAMANIAN C, SENTHILVELAN S. Short-term flexural creep behavior and model analysis of a glass-fiber-reinforced thermoplastic composite leaf spring[J]. Journal of Applied Polymer Science, 2011, 120(6):3679-3686.
[9] PARK D W, OH G H, KIM H S. Predicting the stacking sequence of E-glass fiber reinforced polymer (GFRP) epoxy composite using terahertz time-domain spectroscopy (THz-TDS) system[J]. Composites Part:B, 2019, 177:107385.
[10] HOU J P, CHERRUAULT J Y, NAIME I, et al. Evolution of the eye-end design of a composite leaf spring for heavy axle loads[J]. Composite Structures, 2007, 78(3):351-358.
[11] 李伟东,张金栋,刘刚,等. 高韧性双马来酰亚胺树脂的固化反应动力学和TTT图[J].复合材料学报,2016,33(7):1475-1483. LI W D, ZHANG J D, LIU G, et al. Curing reaction kinetics and TTT diagram of high toughness bismaleimide resign[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1475-1483.
[12] 李伟东,张金栋,李韶亮,等. 耐高温双马来酰亚胺树脂的固化反应动力学和TTT图[J]. 材料工程, 2016, 44(9):44-51. LI W D, ZHANG J D, LI S L, et al. Curing kinetics and TTT diagram of high temperature resistance bismaleimide resin[J]. Journal of Materials Engineering, 2016, 44(9):44-51.
[13] FERDOSIAN F, ZHANG Y S, YUAN Z S, et al. Curing kinetics and mechanical properties of bio-based epoxy composites comprising lignin-based epoxy resins[J]. European Polymer Journal, 2016, 82:153-165.
[14] MA H L, ZHANG X, JU F F, et al. A study on curing kinetics of nano-phase modified epoxy resin[J]. Scientific Reports, 2018, 8(1):3045.
[15] ZHOU L S, ZHANG G C, YANG S S, et al. The synthesis, curing kinetics, thermal properties and flame rertardancy of cyclotriphosphazene-containing multifunctional epoxy resin[J]. Thermochimica Acta, 2019, 680:178348.
[16] 代晓青,肖加余,曾竟成,等. 等温DSC法研究RFI用环氧树脂固化动力学[J]. 复合材料学报, 2008, 25(4):18-23. DAI X Q, XIAO Y J, ZENG J C, et al. Curing kinetics of epoxy resin for RFI process using isothermal DSC[J]. Acta Materiae Compositae Sinica, 2008, 25(4):18-23.
[17] TONG X M, ZHANG M, YANG M Z. Study on the curing kinetics of epoxy resin in self-healing microcapsules with different shell material[J]. Advanced Materials Research, 2011, 306/307:658-662.
[18] XU W B, BAO S P, SHEN S J, et al. Curing kinetics of epoxy resin-imidazole-organic montmorillonite nanocomposites determined by differential scanning calorimetry[J]. Journal of Applied Polymer Science, 2003, 88(13):2932-2941.
[19] KUMAR S, SAMAL S K, MOHANTY S, et al. Curing kinetics of bio-based epoxy resin-toughened DGEBA epoxy resin blend[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(5):1567-1578.
[20] 李晓靓,柴春鹏,李昌峰,等. 非等温DSC法研究甲壳型液晶PBPCS改性环氧树脂的固化动力学[J]. 高分子学报, 2013(9):1190-1196. LI X J, CHAI C P, LI C F, et al. Non-isothermal cure kinetics of mesogen-jacketed liquid crystal polymer PBPCS modified epoxy resin[J]. Acta Polymerica Sinica, 2013(9):1190-1196.
[21] 曹伟伟,朱波,朱文滔,等. 基于非等温法的耐高温环氧树脂体系固化反应动力学研究[J]. 材料工程, 2014, 42(8):67-71. CAO W W, ZHU B, ZHU W T, et al. Curing reaction kinetics of heat-resistant epoxy resin system by non-isothermal method[J]. Journal of Materials Engineering, 2014, 42(8):67-71.
[22] LUO X, YU X Y, MA Y H, et al. Preparation and cure kinetics of epoxy with nano-diamond modified with liquid crystalline epoxy[J]. Thermochimica Acta, 2018, 663:1-8.
[1] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[2] 陈萍, 徐学宏, 李振忠, 闫超, 王世杰, 王小群. 一种碳纤维/环氧预浸料的微波固化特性及其层合板的微波固化工艺研究[J]. 材料工程, 2016, 44(4): 45-50.
[3] 张晨乾, 陈蔚, 叶宏军, 关志东, 黎增山. 具有双峰反应特性的高韧性双马来酰亚胺树脂固化动力学和TTT图[J]. 材料工程, 2016, 44(10): 17-23.
[4] 方宜武, 王显峰, 顾善群, 肖军. 自动铺丝过程中预浸料的侧向弯曲[J]. 材料工程, 2015, 43(4): 47-52.
[5] 王炯, 李敏, 顾轶卓, 王绍凯, 张佐光. 炭纤维复合材料共固化液体成型工艺及层间性能研究[J]. 材料工程, 2013, (2): 93-98.
[6] 王晓霞, 王成国, 贾玉玺, 罗玲. 热固性树脂固化动力学模型简化的新方法[J]. 材料工程, 2012, 0(6): 67-70.
[7] 刘宇艳, 隋微微, 方佳莹, 谭惠丰, 杜星文. 二芳基碘鎓盐CD-1012/环氧E-51紫外固化动力学研究[J]. 材料工程, 2008, 0(5): 43-47.
[8] 张宝艳, 陈祥宝, 周正刚. 消泡剂对真空压力成型复合材料质量与性能的影响[J]. 材料工程, 2007, 0(12): 3-7.
[9] 刘宝锋, 李佩兰. 热熔法制备大丝束炭纤维预浸料工艺研究[J]. 材料工程, 2004, 0(4): 46-48.
[10] 乌云其其格. 预聚工艺对3233树脂基复合材料性能的影响[J]. 材料工程, 2002, 0(5): 40-41.
[11] 刘东勋, 欧阳霜. 热熔胶膜法制造预浸料对复合材料力学性能的影响[J]. 材料工程, 1998, 0(2): 24-25,46.
[12] 刘宝峰, 陈宏军, 李佩兰. 48''溶液法织物预浸机工艺稳定性研究[J]. 材料工程, 1997, 0(7): 36-38.
[13] 沈超, 陈祥宝. PMR-15及其复合材料的发展与应用[J]. 材料工程, 1994, 0(11): 6-9.
[14] 吴妙生, 周祝林. 热塑性纤维复合材料综述[J]. 材料工程, 1994, 0(10): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn