Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (7): 45-60    DOI: 10.11868/j.issn.1001-4381.2019.000889
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
拉曼光谱在石墨烯聚合物纳米复合材料中的应用
郝思嘉1,2, 李哲灵3, 任志东1,2, 田俊鹏1,2, 时双强1,2, 邢悦1,2, 杨程1,2
1. 中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095;
2. 北京石墨烯技术研究院有限公司, 北京 100094;
3. 英国 曼彻斯特大学 国家石墨烯研究院, 英国 曼彻斯特 M13 9PL
Applications of Raman spectroscopy in graphene-based polymer nanocomposites
HAO Si-jia1,2, LI Zhe-ling3, REN Zhi-dong1,2, TIAN Jun-peng1,2, SHI Shuang-qiang1,2, XING Yue1,2, YANG Cheng1,2
1. Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Institute of Graphene Technology Co., Ltd., Beijing 100094, China;
3. National Graphene Institute, University of Manchester, Manchester M13 9PL, UK
全文: PDF(4641 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 拉曼光谱不仅能够用于确定石墨烯的物理性质、缺陷程度及层数等,也逐渐发展成为研究石墨烯聚合物复合材料重要的分析表征工具。石墨烯拉曼特征峰可用于对复合材料中石墨烯进行二维及三维的拉曼成像,从而获得石墨烯的分散状态。石墨烯拉曼特征峰的位移能够灵敏地反映石墨烯的形变程度,从而定量地评估复合材料中石墨烯与聚合物分子之间的相互作用、计算石墨烯的有效杨氏模量以及确定石墨烯的空间取向。本文综述了拉曼光谱在石墨烯聚合物复合材料领域的应用研究,介绍了拉曼光谱技术在石墨烯聚合物复合材料领域的最新研究进展,如石墨烯复合材料的微观变形机理、石墨烯与聚合物基体之间的应力转移效率、影响材料性能的关键性因素等。石墨烯聚合物复合材料的拉曼光谱研究目前仍以模型化复合材料为主要研究对象,而且聚合物基体的荧光效应也会在一定程度上限制拉曼光谱的应用。针对于此,可适当提高激发光的功率而产生一些非线性效应,以大幅增大拉曼光强度,从而使拉曼光谱技术在石墨烯聚合物复合材料领域中得到更广泛的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝思嘉
李哲灵
任志东
田俊鹏
时双强
邢悦
杨程
关键词 石墨烯纳米复合材料拉曼光谱分散性力学性能    
Abstract:Raman spectroscopy is well-known for its capability of detecting the physical properties, level of defects and number of layers for graphene-based materials, but far more than that, it's proven to be a versatile and promising tool for characterizing graphene-based polymer composites. This work focuses on the applications of Raman spectroscopy in the field of graphene-based polymer composites. The feature bands in Raman spectroscopy enable direct 2D and 3D imaging of graphene-based nanofillers in the polymer matrix, and even out of other carbonaceous materials. In addition, shifts in the vibrational frequencies of the characteristic bands induced by the strain of graphene could be utilized for analyzing the interactions between graphene-based nanofillers and polymer molecules, for calculating the effective moduli as well as for determining the spatial orientation of graphene-based nanofillers in the matrix. In the meantime, the recent progress of applications of Raman spectroscopy in the field of graphene-based polymer composites is introduced, such as the analysis of micromechanics of graphene-based nanocomposites, the investigation of stress transfer efficiency between the nanofillers and the matrix, and the reveal of key factors affecting material behavior. The Raman spectroscopy researches of graphene-based polymer composites currently are mainly focused on model composites, and the fluorescent effect of the matrix polymer as well limits the further applications of Raman spectroscopy. In order to address such problem, the amplified razor power are often adopted, and the resulted nonlinear effects are capable of increasing the intensity of the Raman signal, thus the Raman spectroscopy will be more widely applied in the field of graphene-based polymer composites.
Key wordsgraphene    nanocomposite    Raman spectroscopy    dispersity    mechanical property
收稿日期: 2019-09-26      出版日期: 2020-07-21
中图分类号:  O657.37  
基金资助: 
通讯作者: 杨程(1978-),女,研究员,博士,主要从事石墨烯的制备和应用研究,联系地址:北京市81信箱72分箱(100095),E-mail:chengyang_78@126.com     E-mail: chengyang_78@126.com
引用本文:   
郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
HAO Si-jia, LI Zhe-ling, REN Zhi-dong, TIAN Jun-peng, SHI Shuang-qiang, XING Yue, YANG Cheng. Applications of Raman spectroscopy in graphene-based polymer nanocomposites. Journal of Materials Engineering, 2020, 48(7): 45-60.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000889      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/45
[1] BALAZS A C,EMRICK T,RUSSELL T P.Nanoparticle polymer composites:where two small worlds meet[J].Science,2006,314(5802):1107-1110.
[2] COLEMAN J N,KHAN U,BLAU W J,et al.Small but strong:a review of the mechanical properties of carbon nanotube-polymer composites[J].Carbon,2006,44(9):1624-1652.
[3] LIN B,GELVES G A,HABER J A,et al.Electrical, rheological, and mechanical properties of polystyrene/copper nanowire nanocomposites[J].Industrial & Engineering Chemistry Research,2007,46(8):2481-2487.
[4] WANG K,CHEN L,WU J,et al.Epoxy nanocomposites with highly exfoliated clay:mechanical properties and fracture mechanisms[J].Macromolecules,2005,38(3):788-800.
[5] YANG C,HAO S J,DAI S L,et al.Nanocomposites of poly(vinylidene fluoride)-controllable hydroxylated/carboxylated graphene with enhanced dielectric performance for large energy density capacitor[J].Carbon,2017,117:301-312.
[6] ZHANG X,JIANG J,SHEN Z,et al.Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions[J].Advanced Materials,2018,30(16):1707269.
[7] BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
[8] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Two-dimensional gas of massless Dirac fermions in graphene[J].Nature,2005,438(7065):197-200.
[9] ZHU Y,MURALI S,CAI W,et al.Graphene and graphene oxide:synthesis,properties,and applications[J].Advanced Materials,2010,22(35):3906-3924.
[10] LEE C,WEI X,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
[11] DRESSELHAUS M S,DRESSELHAUS G,SAITO R,et al.Raman spectroscopy of carbon nanotubes[J].Physics Reports,2005,409(2):47-99.
[12] MALARD L,PIMENTA M A,DRESSELHAUS G,et al.Raman spectroscopy in graphene[J].Physics Reports,2009,473(5):51-87.
[13] SAITO R,HOFMANN M,DRESSELHAUS G,et al.Raman spectroscopy of graphene and carbon nanotubes[J].Advances in Physics,2011,60(3):413-550.
[14] 吴娟霞,徐华,张锦.拉曼光谱在石墨烯结构表征中的应用[J].化学学报,2014,72(3):301-318. WU J X,XU H,ZHANG J.Raman spectroscopy of graphene[J].Acta Chimica Sinica,2014,72(3):301-318.
[15] WU J B,LIN M L,CONG X,et al.Raman spectroscopy of graphene-based materials and its applications in related devices[J].Chemical Society Reviews,2018,47(5):1822-1873.
[16] LUCCHESE M M,STAVALE F,FERREIRA E H M,et al.Quantifying ion-induced defects and Raman relaxation length in graphene[J].Carbon,2010,48(5):1592-1597.
[17] CASIRAGHI C,HARTSCHUH A,QIAN H,et al.Raman spectroscopy of graphene edges[J].Nano Letters,2009,9(4):1433-1441.
[18] CHEN C F,PARK C H,BOUDOURIS B W,et al.Controlling inelastic light scattering quantum pathways in graphene[J].Nature,2011,471(7340):617-620.
[19] CASIRAGHI C,PISANA S,NOVOSELOV K S,et al.Raman fingerprint of charged impurities in graphene[J].Applied Physics Letters,2007,91(23):3.
[20] YOUNG R J,KINLOCH I A,GONG L,et al.The mechanics of graphene nanocomposites:a review[J].Composites Science and Technology,2012,72(12):1459-1476.
[21] PAPAGEORGIOU D G,KINLOCH I A,YOUNG R J.Mechanical properties of graphene and graphene-based nanocomposites[J].Progress in Materials Science,2017,90:75-127.
[22] FERRALIS N.Probing mechanical properties of graphene with Raman spectroscopy[J].Journal of Materials Science,2010,45(19):5135-5149.
[23] YOUNG R J,LIU M,KINLOCH I A,et al.The mechanics of reinforcement of polymers by graphene nanoplatelets[J].Composites Science and Technology,2018,154:110-116.
[24] KINLOCH I A,SUHR J,LOU J,et al.Composites with carbon nanotubes and graphene:an outlook[J].Science,2018,362(6414):547-553.
[25] KIM Y,POUMIROL J M,LOMBARDO A,et al.Measurement of filling-factor-dependent magnetophonon resonances in graphene using Raman spectroscopy[J].Physical Review Letters,2013,110(22):5.
[26] QIU C Y,SHEN X N,CAO B C,et al.Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy[J].Physical Review B,2013,88(16):12.
[27] MALEKPOUR H,BALANDIN A A.Raman-based technique for measuring thermal conductivity of graphene and related materials[J].Journal of Raman Spectroscopy,2018,49(1):106-120.
[28] FERRARI A C,BASKO D M.Raman spectroscopy as a versatile tool for studying the properties of graphene[J].Nature Nanotechnology,2013,8(4):235-246.
[29] KIM H,ABDALA A A,MACOSKO C W.Graphene/polymer nanocomposites[J].Macromolecules,2010,43(16):6515-6530.
[30] HUANG X,QI X Y,BOEY F,et al.Graphene-based composites[J].Chemical Society Reviews,2012,41(2):666-686.
[31] CHEE W K,LIM H N,HUANG N M,et al.Nanocomposites of graphene/polymers:a review[J].RSC Advances,2015,5(83):68014-68051.
[32] LI Z,WANG L,LI Y,et al.Carbon-based functional nanomaterials:preparation, properties and applications[J].Composites Science and Technology,2019,179:10-40.
[33] SYURIK Y V,GHISLANDI M G,TKALYA E E,et al.Graphene network organisation in conductive polymer composites[J].Macromolecular Chemistry and Physics,2012,213(12):1251-1258.
[34] ALEKSEEV A,EFIMOV A,LU K,et al.Three-dimensional electrical property mapping with nanometer resolution[J].Advanced Materials,2009,21(48):4915-4919.
[35] TANG L C,WAN Y J,YAN D,et al.The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites[J].Carbon,2013,60:16-27.
[36] SHOJAEE S A,ZANDIATASHBAR A,KORATKAR N,et al.Raman spectroscopic imaging of graphene dispersion in polymer composites[J].Carbon,2013,62:510-513.
[37] ZHAO F,LING L,LIU L,et al.The dispersion of graphene in conductive epoxy composites investigated by Raman spectroscopy[J].Journal of Raman Spectroscopy,2017,48(3):432-436.
[38] McCREARY A,AN Q,FORSTER A M,et al.Raman imaging of surface and sub-surface graphene oxide in fiber reinforced polymer nanocomposites[J].Carbon,2019,143:793-801.
[39] WANG B,LI Z,WANG C,et al.Folding large graphene-on-polymer films yields laminated composites with enhanced mechanical performance[J].Advanced Materials,2018,30(35):1707449.
[40] KIM K,COH S,TAN L Z,et al.Raman spectroscopy study of rotated double-layer graphene:misorientation-angle dependence of electronic structure[J].Physical Review Letters,2012,108(24):246103.
[41] BISSETT M A,KONABE S,OKADA S,et al.Enhanced chemical reactivity of graphene induced by mechanical strain[J].ACS Nano,2013,7(11):10335-10343.
[42] BISSETT M A,TSUJI M,AGO H.Strain engineering the pro-perties of graphene and other two-dimensional crystals[J].Physical Chemistry Chemical Physics,2014,16(23):11124-11138.
[43] NI Z H,YU T,LU Y H,et al.Uniaxial strain on graphene:Raman spectroscopy study and band-gap opening[J].ACS Nano,2008,2(11):2301-2305.
[44] PEREIRA V M,CASTRO N A H,PERES N M R.Tight-binding approach to uniaxial strain in graphene[J].Physical Review B,2009,80(4):045401.
[45] SI C,LIU Z,DUAN W,et al.First-principles calculations on the effect of doping and biaxial tensile strain on electron-phonon coupling in graphene[J].Physical Review Letters,2013,111(19):196802.
[46] GALIOTIS C,FRANK O,KOUKARAS E N,et al.Graphene mechanics:current status and perspectives[J].Annual Review of Chemical and Biomolecular Engineering,2015,6(1):121-140.
[47] MOHIUDDIN T M G,LOMBARDO A,NAIR R R,et al.Uni-axial strain in graphene by Raman spectroscopy:G peak splitting, Grüneisen parameters, and sample orientation[J].Physical Review B,2009,79(20):205433.
[48] HUANG Y,YOUNG R J.Effect of fibre microstructure upon the modulus of PAN-and pitch-based carbon fibres[J].Carbon,1995,33(2):97-107.
[49] COOPER C A,YOUNG R J,HALSALL M.Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy[J].Composites:Part A,2001,32(3):401-411.
[50] TSOUKLERI G,PARTHENIOS J,PAPAGELIS K,et al.Subjecting a graphene monolayer to tension and compression[J].Small,2009,5(21):2397-2402.
[51] METZGER C,RÉMI S,LIU M,et al.Biaxial strain in graphene adhered to shallow depressions[J].Nano Letters,2010,10(1):6-10.
[52] GONG L,KINLOCH I A,YOUNG R J,et al.Interfacial stress transfer in a graphene monolayer nanocomposite[J].Advanced Materials,2010,22(24):2694-2697.
[53] DING F,JI H,CHEN Y,et al.Stretchable graphene:a close look at fundamental parameters through biaxial straining[J].Nano Letters,2010,10(9):3453-3458.
[54] FRANK O,TSOUKLERI G,RIAZ I,et al.Development of a universal stress sensor for graphene and carbon fibres[J].Nature Communications,2011,2:255.
[55] LI Z,CHU J,YANG C,et al.Effect of functional groups on the agglomeration of graphene in nanocomposites[J].Composites Science and Technology,2018,163:116-122.
[56] RICE C,YOUNG R J,ZAN R,et al.Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2[J].Physical Review B,2013,87(8):081307.
[57] WANG F,KINLOCH I A,WOLVERSON D,et al.Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes[J].2D Materials,2016,4(1):015007.
[58] MOUNET N,MARZARI N.First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[J].Physical Review B,2005,71(20):205214.
[59] YOON D,SON Y-W,CHEONG H.Strain-dependent splitting of the double-resonance Raman scattering band in graphene[J].Physical Review Letters,2011,106(15):155502.
[60] CHEN C,WU J Z,LAM K T,et al.Graphene nanoribbons under mechanical strain[J].Advanced Materials,2015,27(2):303-309.
[61] ANDROULIDAKIS C,KOUKARAS E N,PARTHENIOS J,et al.Graphene flakes under controlled biaxial deformation[J].Scientific Reports,2015,5:18219.
[62] GONG L,YOUNG R J,KINLOCH I A,et al.Optimizing the reinforcement of polymer-based nanocomposites by graphene[J].ACS Nano,2012,6(3):2086-2095.
[63] LEE J-U,YOON D,CHEONG H.Estimation of Young's modulus of graphene by Raman spectroscopy[J].Nano Letters,2012,12(9):4444-4448.
[64] ZABEL J,NAIR R R,OTT A K,et al.Raman spectroscopy of graphene and bilayer under biaxial strain:bubbles and balloons[J].Nano Letters,2012,12(2):617-621.
[65] CASIRAGHI C,PISANA S,NOVOSELOV K S,et al.Raman fingerprint of charged impurities in graphene[J].Applied Physics Letters,2007,91(23):233108.
[66] GEORGIOU T,BRITNELL L,BLAKE P,et al.Graphene bubbles with controllable curvature[J].Applied Physics Letters,2011,99(9):093103.
[67] JIANG T,HUANG R,ZHU Y.Interfacial sliding and buckling of monolayer graphene on a stretchable substrate[J].Advanced Functional Materials,2014,24(3):396-402.
[68] RAJU A P A,LEWIS A,DERBY B,et al.Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy[J].Advanced Functional Materials,2014,24(19):2865-2874.
[69] TRUNG T Q,TIEN N T,KIM D,et al.A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing[J].Advanced Functional Materials,2014,24(1):117-124.
[70] CHUN S,CHOI Y,PARK W.All-graphene strain sensor on soft substrate[J].Carbon,2017,116:753-759.
[71] GAO Y,LIU LQ,ZU S Z,et al.The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers[J].ACS Nano,2011,5(3):2134-2141.
[72] SUK J W,PINER R D,AN J,et al.Mechanical properties of monolayer graphene oxide[J].ACS Nano,2010,4(11):6557-6564.
[73] GÓMEZ-NAVARRO C,BURGHARD M,KERN K.Elastic properties of chemically derived single graphene sheets[J].Nano Letters,2008,8(7):2045-2049.
[74] LI Z,KINLOCH I A,YOUNG R J.The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites[J].Philosophical Transactions:A,2016,374(2071):20150283.
[75] CORROD E,TARAVILLO M,BAONZA V G.Nonlinear strain effects in double-resonance Raman bands of graphite, graphene, and related materials[J].Physical Review B,2012,85(3):033407.
[76] VLASSIOUK I,POLIZOS G,COOPER R,et al.Strong and electrically conductive graphene-based composite fibers and laminates[J].ACS Applied Materials & Interfaces,2015,7(20):10702-10709.
[77] YOUNG R J,GONG L,KINLOCH I A,et al.Strain mapping in a graphene monolayer nanocomposite[J].ACS Nano,2011,5(4):3079-3084.
[78] WANG G,DAI Z,LIU L,et al.Tuning the interfacial mechanical behaviors of monolayer graphene/PMMA nanocomposites[J].ACS Applied Materials & Interfaces,2016,8(34):22554-22562.
[79] POLYZOS I,BIANCHI M,RIZZI L,et al.Suspended monolayer graphene under true uniaxial deformation[J].Nanoscale,2015,7:13033-13042.
[80] CORRO D E,KAVAN L,KALBAC M,et al.Strain assessment in graphene through the Raman 2D'mode[J].The Journal of Physical Chemistry C,2015,119(45):25651-25656.
[81] NARULA R,REICH S.Probing LO phonons of graphene under tension via the 2D' Raman mode[J].Physical Review B,2013,87(11):115424.
[82] BERNAL J D.The structure of graphite[J].Proceedings of the Royal Society:A,1924,106(740):749-773.
[83] FRANK O,BOUŠA M,RIAZ I,et al.Phonon and structural changes in deformed bernal stacked bilayer graphene[J].Nano Letters,2012,12(2):687-693.
[84] GONG L,YOUNG R J,KINLOCA H I,et al.Reversible loss of bernal stacking during the deformation of few-layer graphene in nanocomposites[J].ACS Nano,2013,7(8):7287-7294.
[85] MAROM G,DANIEL WAGNER H.Should polymer nanocomposites be regarded as molecular composites?[J].Journal of Materials Science,2017,52(14):8357-8361.
[86] ABOUDI J,ARNOLD S M,BEDNARCYK B A.Chapter 1-introduction, micromechanics of composite materials[M].ABOUDI J, ARNOLD S M,BEDNARCYK B A,ed. Oxford:Butterworth-Heinemann,2013:1-18.
[87] YOUNG R J,LOVELL P A. Introduction to polymers[M]. Boca Raton,USA:CRC Press,2011.
[88] LI Z L,YOUNG R J,KINLOCH I A,et al.Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy[J].Carbon,2015,88:215-224.
[89] LI Z,YOUNG R J,WILSON N R,et al.Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites[J].Composites Science and Technology,2016,123:125-133.
[90] HERMANS J J,HERMANS P H,VERMAAS D,et al.Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram[J].Recueil des Travaux Chimiques des Pays-Bas,1946,65(6):427-447.
[91] KRENCHEL H. Fibre reinforcement theoretical and practical investigations of the elasticity and strength of fibre-reinforced materials[M]. Copenhagen,Danmark:Akademisk Forlag,1964.
[92] VALLÉS C,BECKERT F,BURK L,et al.Effect of the C/O ratio in graphene oxide materials on the reinforcement of epoxy-based nanocomposites[J].Journal of Polymer Science:B,2015,54(2):281-291.
[93] YOUSEFI N,GUDARZI M M,ZHENG Q,et al.Self-alignment and high electrical conductivity of ultralarge graphene oxide-polyurethane nanocomposites[J].Journal of Materials Chemistry,2012,22(25):12709-12717.
[94] BODEN A,BOERNER B,KUSCH P,et al.Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites[J].Nano Letters,2014,14(6):3640-3644.
[95] VERMA A,PARASHAR A.Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide[J].Nanotechnology,2018,29(11):115706.
[96] SHANG J,CHEN Y,ZHOU Y,et al.Effect of folded and crumpled morphologies of graphene oxide platelets on the mechanical performances of polymer nanocomposites[J].Polymer,2015,68:131-139.
[97] LI Z,YOUNG R J,KINLOCH I A.Interfacial stress transfer in graphene oxide nanocomposites[J].ACS Applied Materials & Interfaces,2013,5(2):456-463.
[98] AHMAD S R,XUE C,YOUNG R J.The mechanisms of reinforcement of polypropylene by graphene nanoplatelets[J].Materials Science and Engineering:B,2017,216:2-9.
[99] YOUNG R J,EICHHORN S J.Deformation mechanisms in polymer fibres and nanocomposites[J].Polymer,2007,48(1):2-18.
[100] LI S,LI Z,BURNETT T L,et al.Nanocomposites of graphene nanoplatelets in natural rubber:microstructure and mechanisms of reinforcement[J].Journal of Materials Science,2017,52(16):9558-9572.
[101] WANG R,LI Z,LIU W,et al.Attapulgite-graphene oxide hybrids as thermal and mechanical reinforcements for epoxy composites[J].Composites Science and Technology,2013,87:29-35.
[102] PAPAGEORGIOU D G,KINLOCH I A,YOUNG R J.Hybrid multifunctional graphene/glass-fibre polypropylene composites[J].Composites Science and Technology,2016,137:44-51.
[103] WAN S J,CHEN Y,WANG Y L,et al.Ultrastrong graphene films via long-chain π-bridging[J].Matter,2019,1(2):389-401.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[4] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[5] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[6] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[7] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[8] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[9] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[10] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[11] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[12] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[13] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[14] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[15] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn