Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (7): 45-60    DOI: 10.11868/j.issn.1001-4381.2019.000889
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
拉曼光谱在石墨烯聚合物纳米复合材料中的应用
郝思嘉1,2, 李哲灵3, 任志东1,2, 田俊鹏1,2, 时双强1,2, 邢悦1,2, 杨程1,2,*()
1 中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
2 北京石墨烯技术研究院有限公司, 北京 100094
3 英国 曼彻斯特大学 国家石墨烯研究院, 英国 曼彻斯特 M13 9PL
Applications of Raman spectroscopy in graphene-based polymer nanocomposites
Si-jia HAO1,2, Zhe-ling LI3, Zhi-dong REN1,2, Jun-peng TIAN1,2, Shuang-qiang SHI1,2, Yue XING1,2, Cheng YANG1,2,*()
1 Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Institute of Graphene Technology Co., Ltd., Beijing 100094, China
3 National Graphene Institute, University of Manchester, Manchester M13 9PL, UK
全文: PDF(4641 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

拉曼光谱不仅能够用于确定石墨烯的物理性质、缺陷程度及层数等,也逐渐发展成为研究石墨烯聚合物复合材料重要的分析表征工具。石墨烯拉曼特征峰可用于对复合材料中石墨烯进行二维及三维的拉曼成像,从而获得石墨烯的分散状态。石墨烯拉曼特征峰的位移能够灵敏地反映石墨烯的形变程度,从而定量地评估复合材料中石墨烯与聚合物分子之间的相互作用、计算石墨烯的有效杨氏模量以及确定石墨烯的空间取向。本文综述了拉曼光谱在石墨烯聚合物复合材料领域的应用研究,介绍了拉曼光谱技术在石墨烯聚合物复合材料领域的最新研究进展,如石墨烯复合材料的微观变形机理、石墨烯与聚合物基体之间的应力转移效率、影响材料性能的关键性因素等。石墨烯聚合物复合材料的拉曼光谱研究目前仍以模型化复合材料为主要研究对象,而且聚合物基体的荧光效应也会在一定程度上限制拉曼光谱的应用。针对于此,可适当提高激发光的功率而产生一些非线性效应,以大幅增大拉曼光强度,从而使拉曼光谱技术在石墨烯聚合物复合材料领域中得到更广泛的应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝思嘉
李哲灵
任志东
田俊鹏
时双强
邢悦
杨程
关键词 石墨烯纳米复合材料拉曼光谱分散性力学性能    
Abstract

Raman spectroscopy is well-known for its capability of detecting the physical properties, level of defects and number of layers for graphene-based materials, but far more than that, it's proven to be a versatile and promising tool for characterizing graphene-based polymer composites. This work focuses on the applications of Raman spectroscopy in the field of graphene-based polymer composites. The feature bands in Raman spectroscopy enable direct 2D and 3D imaging of graphene-based nanofillers in the polymer matrix, and even out of other carbonaceous materials. In addition, shifts in the vibrational frequencies of the characteristic bands induced by the strain of graphene could be utilized for analyzing the interactions between graphene-based nanofillers and polymer molecules, for calculating the effective moduli as well as for determining the spatial orientation of graphene-based nanofillers in the matrix. In the meantime, the recent progress of applications of Raman spectroscopy in the field of graphene-based polymer composites is introduced, such as the analysis of micromechanics of graphene-based nanocomposites, the investigation of stress transfer efficiency between the nanofillers and the matrix, and the reveal of key factors affecting material behavior. The Raman spectroscopy researches of graphene-based polymer composites currently are mainly focused on model composites, and the fluorescent effect of the matrix polymer as well limits the further applications of Raman spectroscopy. In order to address such problem, the amplified razor power are often adopted, and the resulted nonlinear effects are capable of increasing the intensity of the Raman signal, thus the Raman spectroscopy will be more widely applied in the field of graphene-based polymer composites.

Key wordsgraphene    nanocomposite    Raman spectroscopy    dispersity    mechanical property
收稿日期: 2019-09-26      出版日期: 2020-07-21
中图分类号:  O657.37  
基金资助:中国国家留学基金项目(201705345008);航材院石墨烯专项(GR170353);国家财政部稳定支持科研项目(KZ0C190315)
通讯作者: 杨程     E-mail: chengyang_78@126.com
作者简介: 杨程(1978-), 女, 研究员, 博士, 主要从事石墨烯的制备和应用研究, 联系地址:北京市81信箱72分箱(100095), E-mail:chengyang_78@126.com
引用本文:   
郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
Si-jia HAO, Zhe-ling LI, Zhi-dong REN, Jun-peng TIAN, Shuang-qiang SHI, Yue XING, Cheng YANG. Applications of Raman spectroscopy in graphene-based polymer nanocomposites. Journal of Materials Engineering, 2020, 48(7): 45-60.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000889      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/45
Fig.1  碳材料和碳纳米结构(a)以及石墨烯材料(b)的拉曼光谱图[15]
Fig.2  复合材料中纤维与树脂的拉曼光谱图(a),经纱(b)和纬纱(c)编织样品的光学照片与二维拉曼图的叠加图,改性氧化石墨烯团聚体的三维拉曼图(d~e)[38]
Fig.3  单轴应变下单层石墨烯和三层石墨烯的G峰(a)与2D峰(b)位置与应变之间的线性关系[43]
Fig.4  表面涂覆和未涂覆环氧树脂的单层石墨烯在不同应变水平下的应变分布图(a),表面涂覆环氧树脂的单层石墨烯在应变卸载后及重新加载应变至0.8%和0.6%的应变分布图(b)[77]
Fig.5  石墨烯片的坐标体系(x, y, z)与纳米复合材料样品的坐标体系(X, Y, Z)间的关系(a)[88],取向排列和无取向排列的GO纳米片的Krenchel因子(b)[89],GO环氧树脂复合材料中GO含量对模量的影响(c)[92]
Fig.6  含量分别为1%(a),2%(b),3%(c)及5%(d)的BwGO/PVA纳米复合材料的拉曼D峰强度ID与极化角度Φ的关系[55]
Fig.7  GO含量为5%的纳米复合材料中GO的D峰位置随应变的变化情况(a)[97],使用GO短片及长片的增强PVA复合材料的G+和G-峰位置随应变的变化情况(b~c)[96],不同测试方法下PP/GNP纳米复合材料的GNP含量对GNP有效模量的影响(d)[98]
1 BALAZS A C , EMRICK T , RUSSELL T P . Nanoparticle polymer composites:where two small worlds meet[J]. Science, 2006, 314 (5802): 1107- 1110.
doi: 10.1126/science.1130557
2 COLEMAN J N , KHAN U , BLAU W J , et al. Small but strong:a review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon, 2006, 44 (9): 1624- 1652.
doi: 10.1016/j.carbon.2006.02.038
3 LIN B , GELVES G A , HABER J A , et al. Electrical, rheological, and mechanical properties of polystyrene/copper nanowire nanocomposites[J]. Industrial & Engineering Chemistry Research, 2007, 46 (8): 2481- 2487.
4 WANG K , CHEN L , WU J , et al. Epoxy nanocomposites with highly exfoliated clay:mechanical properties and fracture mechanisms[J]. Macromolecules, 2005, 38 (3): 788- 800.
doi: 10.1021/ma048465n
5 YANG C , HAO S J , DAI S L , et al. Nanocomposites of poly(vinylidene fluoride)-controllable hydroxylated/carboxylated graphene with enhanced dielectric performance for large energy density capacitor[J]. Carbon, 2017, 117, 301- 312.
doi: 10.1016/j.carbon.2017.03.004
6 ZHANG X , JIANG J , SHEN Z , et al. Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions[J]. Advanced Materials, 2018, 30 (16): 1707269.
doi: 10.1002/adma.201707269
7 BALANDIN A A , GHOSH S , BAO W , et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3): 902- 907.
doi: 10.1021/nl0731872
8 NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438 (7065): 197- 200.
doi: 10.1038/nature04233
9 ZHU Y , MURALI S , CAI W , et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22 (35): 3906- 3924.
doi: 10.1002/adma.201001068
10 LEE C , WEI X , KYSAR J W , et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887): 385- 388.
doi: 10.1126/science.1157996
11 DRESSELHAUS M S , DRESSELHAUS G , SAITO R , et al. Raman spectroscopy of carbon nanotubes[J]. Physics Reports, 2005, 409 (2): 47- 99.
doi: 10.1016/j.physrep.2004.10.006
12 MALARD L , PIMENTA M A , DRESSELHAUS G , et al. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473 (5): 51- 87.
13 SAITO R , HOFMANN M , DRESSELHAUS G , et al. Raman spectroscopy of graphene and carbon nanotubes[J]. Advances in Physics, 2011, 60 (3): 413- 550.
14 吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72 (3): 301- 318.
14 WU J X , XU H , ZHANG J . Raman spectroscopy of graphene[J]. Acta Chimica Sinica, 2014, 72 (3): 301- 318.
15 WU J B , LIN M L , CONG X , et al. Raman spectroscopy of graphene-based materials and its applications in related devices[J]. Chemical Society Reviews, 2018, 47 (5): 1822- 1873.
doi: 10.1039/C6CS00915H
16 LUCCHESE M M , STAVALE F , FERREIRA E H M , et al. Quantifying ion-induced defects and Raman relaxation length in graphene[J]. Carbon, 2010, 48 (5): 1592- 1597.
doi: 10.1016/j.carbon.2009.12.057
17 CASIRAGHI C , HARTSCHUH A , QIAN H , et al. Raman spectroscopy of graphene edges[J]. Nano Letters, 2009, 9 (4): 1433- 1441.
doi: 10.1021/nl8032697
18 CHEN C F , PARK C H , BOUDOURIS B W , et al. Controlling inelastic light scattering quantum pathways in graphene[J]. Nature, 2011, 471 (7340): 617- 620.
doi: 10.1038/nature09866
19 CASIRAGHI C , PISANA S , NOVOSELOV K S , et al. Raman fingerprint of charged impurities in graphene[J]. Applied Physics Letters, 2007, 91 (23): 3.
20 YOUNG R J , KINLOCH I A , GONG L , et al. The mechanics of graphene nanocomposites:a review[J]. Composites Science and Technology, 2012, 72 (12): 1459- 1476.
doi: 10.1016/j.compscitech.2012.05.005
21 PAPAGEORGIOU D G , KINLOCH I A , YOUNG R J . Mechanical properties of graphene and graphene-based nanocomposites[J]. Progress in Materials Science, 2017, 90, 75- 127.
doi: 10.1016/j.pmatsci.2017.07.004
22 FERRALIS N . Probing mechanical properties of graphene with Raman spectroscopy[J]. Journal of Materials Science, 2010, 45 (19): 5135- 5149.
doi: 10.1007/s10853-010-4673-3
23 YOUNG R J , LIU M , KINLOCH I A , et al. The mechanics of reinforcement of polymers by graphene nanoplatelets[J]. Composites Science and Technology, 2018, 154, 110- 116.
doi: 10.1016/j.compscitech.2017.11.007
24 KINLOCH I A , SUHR J , LOU J , et al. Composites with carbon nanotubes and graphene:an outlook[J]. Science, 2018, 362 (6414): 547- 553.
doi: 10.1126/science.aat7439
25 KIM Y , POUMIROL J M , LOMBARDO A , et al. Measurement of filling-factor-dependent magnetophonon resonances in graphene using Raman spectroscopy[J]. Physical Review Letters, 2013, 110 (22): 5.
26 QIU C Y , SHEN X N , CAO B C , et al. Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy[J]. Physical Review B, 2013, 88 (16): 12.
27 MALEKPOUR H , BALANDIN A A . Raman-based technique for measuring thermal conductivity of graphene and related materials[J]. Journal of Raman Spectroscopy, 2018, 49 (1): 106- 120.
doi: 10.1002/jrs.5230
28 FERRARI A C , BASKO D M . Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8 (4): 235- 246.
29 KIM H , ABDALA A A , MACOSKO C W . Graphene/polymer nanocomposites[J]. Macromolecules, 2010, 43 (16): 6515- 6530.
doi: 10.1021/ma100572e
30 HUANG X , QI X Y , BOEY F , et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41 (2): 666- 686.
31 CHEE W K , LIM H N , HUANG N M , et al. Nanocomposites of graphene/polymers:a review[J]. RSC Advances, 2015, 5 (83): 68014- 68051.
doi: 10.1039/C5RA07989F
32 LI Z , WANG L , LI Y , et al. Carbon-based functional nanomaterials:preparation, properties and applications[J]. Composites Science and Technology, 2019, 179, 10- 40.
doi: 10.1016/j.compscitech.2019.04.028
33 SYURIK Y V , GHISLANDI M G , TKALYA E E , et al. Graphene network organisation in conductive polymer composites[J]. Macromolecular Chemistry and Physics, 2012, 213 (12): 1251- 1258.
doi: 10.1002/macp.201200116
34 ALEKSEEV A , EFIMOV A , LU K , et al. Three-dimensional electrical property mapping with nanometer resolution[J]. Advanced Materials, 2009, 21 (48): 4915- 4919.
doi: 10.1002/adma.200901754
35 TANG L C , WAN Y J , YAN D , et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites[J]. Carbon, 2013, 60, 16- 27.
doi: 10.1016/j.carbon.2013.03.050
36 SHOJAEE S A , ZANDIATASHBAR A , KORATKAR N , et al. Raman spectroscopic imaging of graphene dispersion in polymer composites[J]. Carbon, 2013, 62, 510- 513.
doi: 10.1016/j.carbon.2013.05.068
37 ZHAO F , LING L , LIU L , et al. The dispersion of graphene in conductive epoxy composites investigated by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2017, 48 (3): 432- 436.
doi: 10.1002/jrs.5041
38 McCREARY A , AN Q , FORSTER A M , et al. Raman imaging of surface and sub-surface graphene oxide in fiber reinforced polymer nanocomposites[J]. Carbon, 2019, 143, 793- 801.
doi: 10.1016/j.carbon.2018.11.014
39 WANG B , LI Z , WANG C , et al. Folding large graphene-on-polymer films yields laminated composites with enhanced mechanical performance[J]. Advanced Materials, 2018, 30 (35): 1707449.
doi: 10.1002/adma.201707449
40 KIM K , COH S , TAN L Z , et al. Raman spectroscopy study of rotated double-layer graphene:misorientation-angle dependence of electronic structure[J]. Physical Review Letters, 2012, 108 (24): 246103.
doi: 10.1103/PhysRevLett.108.246103
41 BISSETT M A , KONABE S , OKADA S , et al. Enhanced chemical reactivity of graphene induced by mechanical strain[J]. ACS Nano, 2013, 7 (11): 10335- 10343.
doi: 10.1021/nn404746h
42 BISSETT M A , TSUJI M , AGO H . Strain engineering the pro-perties of graphene and other two-dimensional crystals[J]. Physical Chemistry Chemical Physics, 2014, 16 (23): 11124- 11138.
doi: 10.1039/C3CP55443K
43 NI Z H , YU T , LU Y H , et al. Uniaxial strain on graphene:Raman spectroscopy study and band-gap opening[J]. ACS Nano, 2008, 2 (11): 2301- 2305.
doi: 10.1021/nn800459e
44 PEREIRA V M , CASTRO N A H , PERES N M R . Tight-binding approach to uniaxial strain in graphene[J]. Physical Review B, 2009, 80 (4): 045401.
45 SI C , LIU Z , DUAN W , et al. First-principles calculations on the effect of doping and biaxial tensile strain on electron-phonon coupling in graphene[J]. Physical Review Letters, 2013, 111 (19): 196802.
doi: 10.1103/PhysRevLett.111.196802
46 GALIOTIS C , FRANK O , KOUKARAS E N , et al. Graphene mechanics:current status and perspectives[J]. Annual Review of Chemical and Biomolecular Engineering, 2015, 6 (1): 121- 140.
doi: 10.1146/annurev-chembioeng-061114-123216
47 MOHIUDDIN T M G , LOMBARDO A , NAIR R R , et al. Uni-axial strain in graphene by Raman spectroscopy:G peak splitting, Grüneisen parameters, and sample orientation[J]. Physical Review B, 2009, 79 (20): 205433.
doi: 10.1103/PhysRevB.79.205433
48 HUANG Y , YOUNG R J . Effect of fibre microstructure upon the modulus of PAN-and pitch-based carbon fibres[J]. Carbon, 1995, 33 (2): 97- 107.
doi: 10.1016/0008-6223(94)00109-D
49 COOPER C A , YOUNG R J , HALSALL M . Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy[J]. Composites:Part A, 2001, 32 (3): 401- 411.
50 TSOUKLERI G , PARTHENIOS J , PAPAGELIS K , et al. Subjecting a graphene monolayer to tension and compression[J]. Small, 2009, 5 (21): 2397- 2402.
doi: 10.1002/smll.200900802
51 METZGER C , RÉMI S , LIU M , et al. Biaxial strain in graphene adhered to shallow depressions[J]. Nano Letters, 2010, 10 (1): 6- 10.
doi: 10.1021/nl901625v
52 GONG L , KINLOCH I A , YOUNG R J , et al. Interfacial stress transfer in a graphene monolayer nanocomposite[J]. Advanced Materials, 2010, 22 (24): 2694- 2697.
doi: 10.1002/adma.200904264
53 DING F , JI H , CHEN Y , et al. Stretchable graphene:a close look at fundamental parameters through biaxial straining[J]. Nano Letters, 2010, 10 (9): 3453- 3458.
doi: 10.1021/nl101533x
54 FRANK O , TSOUKLERI G , RIAZ I , et al. Development of a universal stress sensor for graphene and carbon fibres[J]. Nature Communications, 2011, 2, 255.
doi: 10.1038/ncomms1247
55 LI Z , CHU J , YANG C , et al. Effect of functional groups on the agglomeration of graphene in nanocomposites[J]. Composites Science and Technology, 2018, 163, 116- 122.
doi: 10.1016/j.compscitech.2018.05.016
56 RICE C , YOUNG R J , ZAN R , et al. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2[J]. Physical Review B, 2013, 87 (8): 081307.
doi: 10.1103/PhysRevB.87.081307
57 WANG F , KINLOCH I A , WOLVERSON D , et al. Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes[J]. 2D Materials, 2016, 4 (1): 015007.
58 MOUNET N , MARZARI N . First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[J]. Physical Review B, 2005, 71 (20): 205214.
doi: 10.1103/PhysRevB.71.205214
59 YOON D , SON Y-W , CHEONG H . Strain-dependent splitting of the double-resonance Raman scattering band in graphene[J]. Physical Review Letters, 2011, 106 (15): 155502.
doi: 10.1103/PhysRevLett.106.155502
60 CHEN C , WU J Z , LAM K T , et al. Graphene nanoribbons under mechanical strain[J]. Advanced Materials, 2015, 27 (2): 303- 309.
doi: 10.1002/adma.201403750
61 ANDROULIDAKIS C , KOUKARAS E N , PARTHENIOS J , et al. Graphene flakes under controlled biaxial deformation[J]. Scientific Reports, 2015, 5, 18219.
62 GONG L , YOUNG R J , KINLOCH I A , et al. Optimizing the reinforcement of polymer-based nanocomposites by graphene[J]. ACS Nano, 2012, 6 (3): 2086- 2095.
doi: 10.1021/nn203917d
63 LEE J-U , YOON D , CHEONG H . Estimation of Young's modulus of graphene by Raman spectroscopy[J]. Nano Letters, 2012, 12 (9): 4444- 4448.
doi: 10.1021/nl301073q
64 ZABEL J , NAIR R R , OTT A K , et al. Raman spectroscopy of graphene and bilayer under biaxial strain:bubbles and balloons[J]. Nano Letters, 2012, 12 (2): 617- 621.
doi: 10.1021/nl203359n
65 CASIRAGHI C , PISANA S , NOVOSELOV K S , et al. Raman fingerprint of charged impurities in graphene[J]. Applied Physics Letters, 2007, 91 (23): 233108.
doi: 10.1063/1.2818692
66 GEORGIOU T , BRITNELL L , BLAKE P , et al. Graphene bubbles with controllable curvature[J]. Applied Physics Letters, 2011, 99 (9): 093103.
doi: 10.1063/1.3631632
67 JIANG T , HUANG R , ZHU Y . Interfacial sliding and buckling of monolayer graphene on a stretchable substrate[J]. Advanced Functional Materials, 2014, 24 (3): 396- 402.
68 RAJU A P A , LEWIS A , DERBY B , et al. Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy[J]. Advanced Functional Materials, 2014, 24 (19): 2865- 2874.
doi: 10.1002/adfm.201302869
69 TRUNG T Q , TIEN N T , KIM D , et al. A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing[J]. Advanced Functional Materials, 2014, 24 (1): 117- 124.
70 CHUN S , CHOI Y , PARK W . All-graphene strain sensor on soft substrate[J]. Carbon, 2017, 116, 753- 759.
doi: 10.1016/j.carbon.2017.02.058
71 GAO Y , LIU LQ , ZU S Z , et al. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers[J]. ACS Nano, 2011, 5 (3): 2134- 2141.
doi: 10.1021/nn103331x
72 SUK J W , PINER R D , AN J , et al. Mechanical properties of monolayer graphene oxide[J]. ACS Nano, 2010, 4 (11): 6557- 6564.
doi: 10.1021/nn101781v
73 GÓMEZ-NAVARRO C , BURGHARD M , KERN K . Elastic properties of chemically derived single graphene sheets[J]. Nano Letters, 2008, 8 (7): 2045- 2049.
doi: 10.1021/nl801384y
74 LI Z , KINLOCH I A , YOUNG R J . The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites[J]. Philosophical Transactions:A, 2016, 374 (2071): 20150283.
doi: 10.1098/rsta.2015.0283
75 CORROD E , TARAVILLO M , BAONZA V G . Nonlinear strain effects in double-resonance Raman bands of graphite, graphene, and related materials[J]. Physical Review B, 2012, 85 (3): 033407.
doi: 10.1103/PhysRevB.85.033407
76 VLASSIOUK I , POLIZOS G , COOPER R , et al. Strong and electrically conductive graphene-based composite fibers and laminates[J]. ACS Applied Materials & Interfaces, 2015, 7 (20): 10702- 10709.
77 YOUNG R J , GONG L , KINLOCH I A , et al. Strain mapping in a graphene monolayer nanocomposite[J]. ACS Nano, 2011, 5 (4): 3079- 3084.
doi: 10.1021/nn2002079
78 WANG G , DAI Z , LIU L , et al. Tuning the interfacial mechanical behaviors of monolayer graphene/PMMA nanocomposites[J]. ACS Applied Materials & Interfaces, 2016, 8 (34): 22554- 22562.
79 POLYZOS I , BIANCHI M , RIZZI L , et al. Suspended monolayer graphene under true uniaxial deformation[J]. Nanoscale, 2015, 7, 13033- 13042.
doi: 10.1039/C5NR03072B
80 CORRO D E , KAVAN L , KALBAC M , et al. Strain assessment in graphene through the Raman 2D'mode[J]. The Journal of Physical Chemistry C, 2015, 119 (45): 25651- 25656.
doi: 10.1021/acs.jpcc.5b09643
81 NARULA R , REICH S . Probing LO phonons of graphene under tension via the 2D' Raman mode[J]. Physical Review B, 2013, 87 (11): 115424.
doi: 10.1103/PhysRevB.87.115424
82 BERNAL J D . The structure of graphite[J]. Proceedings of the Royal Society:A, 1924, 106 (740): 749- 773.
83 FRANK O , BOUŠA M , RIAZ I , et al. Phonon and structural changes in deformed bernal stacked bilayer graphene[J]. Nano Letters, 2012, 12 (2): 687- 693.
doi: 10.1021/nl203565p
84 GONG L , YOUNG R J , KINLOCA H I , et al. Reversible loss of bernal stacking during the deformation of few-layer graphene in nanocomposites[J]. ACS Nano, 2013, 7 (8): 7287- 7294.
doi: 10.1021/nn402830f
85 MAROM G , DANIEL WAGNER H . Should polymer nanocomposites be regarded as molecular composites?[J]. Journal of Materials Science, 2017, 52 (14): 8357- 8361.
doi: 10.1007/s10853-017-1113-7
86 ABOUDI J, ARNOLD S M, BEDNARCYK B A.Chapter 1-introduction, micromechanics of composite materials[M].ABOUDI J, ARNOLD S M, BEDNARCYK B A, ed. Oxford: Butterworth-Heinemann, 2013: 1-18.
87 YOUNG R J , LOVELL P A . Introduction to polymers[M]. Boca Raton, USA: CRC Press, 2011.
88 LI Z L , YOUNG R J , KINLOCH I A , et al. Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy[J]. Carbon, 2015, 88, 215- 224.
doi: 10.1016/j.carbon.2015.02.072
89 LI Z , YOUNG R J , WILSON N R , et al. Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites[J]. Composites Science and Technology, 2016, 123, 125- 133.
doi: 10.1016/j.compscitech.2015.12.005
90 HERMANS J J , HERMANS P H , VERMAAS D , et al. Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram[J]. Recueil des Travaux Chimiques des Pays-Bas, 1946, 65 (6): 427- 447.
91 KRENCHEL H . Fibre reinforcement theoretical and practical investigations of the elasticity and strength of fibre-reinforced materials[M]. Copenhagen, Danmark: Akademisk Forlag, 1964.
92 VALLÉS C , BECKERT F , BURK L , et al. Effect of the C/O ratio in graphene oxide materials on the reinforcement of epoxy-based nanocomposites[J]. Journal of Polymer Science:B, 2015, 54 (2): 281- 291.
93 YOUSEFI N , GUDARZI M M , ZHENG Q , et al. Self-alignment and high electrical conductivity of ultralarge graphene oxide-polyurethane nanocomposites[J]. Journal of Materials Chemistry, 2012, 22 (25): 12709- 12717.
doi: 10.1039/c2jm30590a
94 BODEN A , BOERNER B , KUSCH P , et al. Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites[J]. Nano Letters, 2014, 14 (6): 3640- 3644.
doi: 10.1021/nl501411g
95 VERMA A , PARASHAR A . Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide[J]. Nanotechnology, 2018, 29 (11): 115706.
doi: 10.1088/1361-6528/aaa8bb
96 SHANG J , CHEN Y , ZHOU Y , et al. Effect of folded and crumpled morphologies of graphene oxide platelets on the mechanical performances of polymer nanocomposites[J]. Polymer, 2015, 68, 131- 139.
doi: 10.1016/j.polymer.2015.05.003
97 LI Z , YOUNG R J , KINLOCH I A . Interfacial stress transfer in graphene oxide nanocomposites[J]. ACS Applied Materials & Interfaces, 2013, 5 (2): 456- 463.
98 AHMAD S R , XUE C , YOUNG R J . The mechanisms of reinforcement of polypropylene by graphene nanoplatelets[J]. Materials Science and Engineering:B, 2017, 216, 2- 9.
doi: 10.1016/j.mseb.2016.10.003
99 YOUNG R J , EICHHORN S J . Deformation mechanisms in polymer fibres and nanocomposites[J]. Polymer, 2007, 48 (1): 2- 18.
100 LI S , LI Z , BURNETT T L , et al. Nanocomposites of graphene nanoplatelets in natural rubber:microstructure and mechanisms of reinforcement[J]. Journal of Materials Science, 2017, 52 (16): 9558- 9572.
doi: 10.1007/s10853-017-1144-0
101 WANG R , LI Z , LIU W , et al. Attapulgite-graphene oxide hybrids as thermal and mechanical reinforcements for epoxy composites[J]. Composites Science and Technology, 2013, 87, 29- 35.
doi: 10.1016/j.compscitech.2013.08.002
102 PAPAGEORGIOU D G , KINLOCH I A , YOUNG R J . Hybrid multifunctional graphene/glass-fibre polypropylene composites[J]. Composites Science and Technology, 2016, 137, 44- 51.
doi: 10.1016/j.compscitech.2016.10.018
103 WAN S J , CHEN Y , WANG Y L , et al. Ultrastrong graphene films via long-chain π-bridging[J]. Matter, 2019, 1 (2): 389- 401.
doi: 10.1016/j.matt.2019.04.006
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[3] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[6] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[7] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[8] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[9] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[10] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[11] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[12] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[13] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[14] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[15] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn