Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (7): 119-126    DOI: 10.11868/j.issn.1001-4381.2019.000890
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
冷轧成形钛/钢层状复合板界面结合强度的影响因素
刘雪峰1,2(), 白于良1, 李晶琨1, 秦回一3, 陈鑫3
1 北京科技大学 现代交通金属材料与加工技术北京实验室, 北京 100083
2 北京科技大学 材料先进制备技术教育部重点实验室, 北京 100083
3 攀钢集团 成都钛材有限公司 江油分公司, 四川 江油 621701
Influence factors of interfacial bonding strength of cold rolled titanium/steel laminated composite plates
Xue-feng LIU1,2(), Yu-liang BAI1, Jing-kun LI1, Hui-yi QIN3, Xin CHEN3
1 Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory for Advanced Materials Processing(Ministry of Education), University of Science and Technology Beijing, Beijing 100083, China
3 Jiangyou Branch, Chengdu Titanium Material Co., Ltd., Pangang Group, Jiangyou 621701, Sichuan, China
全文: PDF(4592 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用冷轧复合法制备钛/钢层状复合板,研究轧制压下率、轧制道次、表面粗糙度、原材料状态和轧制速率对钛/钢层状复合板界面结合强度的影响。结果表明:界面作用力和轧制力对界面的作用时间是影响钛/钢层状复合板界面结合强度的主要因素。轧制压下率、表面粗糙度和原材料状态通过影响界面作用力来影响钛/钢层状复合板的界面结合强度;轧制速率通过影响轧制力对界面的作用时间来影响钛/钢层状复合板的界面结合强度;钛/钢层状复合板的冷轧复合效果与轧制道次无关,只有单道次轧制压下率超过临界轧制压下率时,才能实现冷轧复合。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘雪峰
白于良
李晶琨
秦回一
陈鑫
关键词 钛/钢层状复合板冷轧复合法界面结合强度轧制工艺    
Abstract

Titanium/steel laminated composite plates were prepared by cold rolling method. The effects of rolling reduction, rolling speed, surface roughness, state of raw material and rolling pass on the interfacial bonding strength of titanium/steel laminated composite plates were studied. The results show that the interfacial action force and action time of rolling force on the interface are the main parameters affecting the interfacial bonding strength of titanium/steel laminated composite plates. The rolling reduction, surface roughness and state of raw material affect the interfacial bonding strength of titanium/steel laminated composite plate through affecting the interfacial action force. The rolling speed affects the interfacial bonding strength of titanium/steel laminated composite plate through affecting the action time of rolling force on the interface. Whether the titanium/steel laminated composite plate can be cold roll bonded or not has nothing to do with the number of rolling passes, only when the rolling reduction of single pass exceeds the critical rolling reduction can the cold roll bonded be realized.

Key wordstitanium/steel laminated composite plate    cold roll bonded method    interfacial bonding strength    rolling process
收稿日期: 2019-09-26      出版日期: 2020-07-21
中图分类号:  TG335.81  
基金资助:国家重点研发计划项目(2018YFA0707300);国家自然科学基金资助项目(51904029)
作者简介: 刘雪峰(1970-), 男, 教授, 博士, 主要从事高性能金属层状复合材料短流程高效制备加工研究, 联系地址:北京市海淀区学院路30号北京科技大学材料科学与工程学院(100083), E-mail:liuxuefengbj@163.com
引用本文:   
刘雪峰, 白于良, 李晶琨, 秦回一, 陈鑫. 冷轧成形钛/钢层状复合板界面结合强度的影响因素[J]. 材料工程, 2020, 48(7): 119-126.
Xue-feng LIU, Yu-liang BAI, Jing-kun LI, Hui-yi QIN, Xin CHEN. Influence factors of interfacial bonding strength of cold rolled titanium/steel laminated composite plates. Journal of Materials Engineering, 2020, 48(7): 119-126.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000890      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/119
Sample C Si Mn P S Ti Fe
TA2 0.017 0 0 0 0 Bal 0.022
Q235 0.15 0.19 0.48 0.007 0.009 0.009 Bal
Table 1  原材料的化学成分(质量分数/%)
Fig.1  钛/钢层状复合板界面结合强度剥离实验检测过程及结果
(a)剥离过程;(b)剥离曲线
Fig.2  钛/钢层状复合板界面结合强度与轧制压下率的关系
Fig.3  冷轧复合钛/钢层状复合板的界面元素分布(a)及形貌(b)
Fig.4  不同轧制压下率制备的钛/钢层状复合板的剥离面形貌
(a)r=35.2%;(b)r=61.9%;(1)钛带;(2)钢板
Fig.5  多道次轧制后钛带与钢板界面的形貌
(a)第一道次;(b)第四道次;(1)钛带;(2)钢板
Fig.6  表面粗糙度对钛/钢层状复合板界面结合强度的影响
(a)钢板沿轧制方向的表面粗糙度;(b)界面结合强度与表面粗糙度的关系
Fig.7  原材料状态对钛/钢层状复合板界面结合强度的影响
Fig.8  轧制速率对钛/钢层状复合板界面结合强度和轧制力作用时间的影响
1 AKBARI MOUSAVI S A A , SARTANGI F P . Experimental investigation of explosive welding of cp-titanium/AlSI 304 stainless steel[J]. Materials & Design, 2009, 30 (3): 459- 468.
2 SONG J , KOSTKA A , VEEHMAYER M , et al. Hierarchical microstructure of explosive joints:example of titanium to steel cladding[J]. Materials Science and Engineering:A, 2011, 528 (6): 2641- 2647.
doi: 10.1016/j.msea.2010.11.092
3 MANIKANDAN P , HOKAMOTO K , FUJITA M , et al. Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel[J]. Journal of Materials Processing Technology, 2008, 195 (1/3): 232- 240.
4 史倩茹, 张敏, 吴伟刚. 钛-钢爆炸复合板熔焊对接过渡层焊接材料[J]. 材料工程, 2018, 46 (9): 138- 143.
4 SHI Q R , ZHANG M , WU W G . Transition layer welding materials of fusion welding joint for titanium-steel explosive composite plate[J]. Journal of Materials Engineering, 2018, 46 (9): 138- 143.
5 XIE M X , ZHANG L J , ZHANG G F , et al. Microstructure and mechanical properties of CP-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling[J]. Materials & Design, 2015, 87, 181- 197.
6 XIE M X , SHANG X T , ZHANG L J , et al. Interface characteristic of explosive-welded and hot-rolled TA1/X65 bimetallic plate[J]. Metals, 2018, 8 (3): 159- 173.
7 KUNDU S , SAM S , MISHRA B , et al. Diffusion bonding of microduplex stainless steel and Ti alloy with and without interlayer:interface microstructure and strength properties[J]. Metallurgical and Materials Transactions A, 2014, 45 (1): 371- 383.
doi: 10.1007/s11661-013-1977-3
8 EROGLU M , KHAN T I , ORHAN N . Diffusion bonding between Ti-6Al-4V alloy and microduplex stainless steel with copper interlayer[J]. Materials Science and Technology, 2013, 18 (1): 68- 72.
9 DENG Y Q , SHENG G M , XU C . Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer[J]. Materials & Design, 2013, 46, 84- 87.
10 LIU J G , CAI W C , LIU L , et al. Investigation of interfacial structure and mechanical properties of titanium clad steel sheets prepared by a brazing-rolling process[J]. Materials Science and Engineering:A, 2017, 703, 386- 398.
doi: 10.1016/j.msea.2017.06.095
11 YU C , XIAO H , YU H , et al. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer[J]. Materials Science and Engineering:A, 2017, 695, 120- 125.
doi: 10.1016/j.msea.2017.03.118
12 YAN J C , ZHAO D S , WANG C W , et al. Vacuum hot roll bon-ding of titanium alloy and stainless steel using nickel interlayer[J]. Materials Science and Technology, 2013, 25 (7): 914- 918.
13 KAHRAMAN N , GULENC B , FINDIK F . Joining of titanium/stainless steel by explosive welding and effect on interface[J]. Journal of Materials Processing Technology, 2005, 169 (2): 127- 133.
doi: 10.1016/j.jmatprotec.2005.06.045
14 王敬忠, 颜学柏, 王韦琪, 等. 轧制钛-钢复合板工艺综述[J]. 材料导报, 2005, 19 (4): 61- 63.
doi: 10.3321/j.issn:1005-023X.2005.04.017
14 WANG J Z , YAN X B , WANG W Q , et al. Summarization of the rolling Ti-steel composite plates process[J]. Materials Reports, 2005, 19 (4): 61- 63.
doi: 10.3321/j.issn:1005-023X.2005.04.017
15 YANG D H , LUO Z A , XIE G M , et al. Effect of vacuum level on microstructure and mechanical properties of titanium-steel vacuum roll clad plates[J]. Journal of Iron and Steel Research International, 2018, 25 (1): 72- 80.
doi: 10.1007/s42243-017-0009-8
16 YU C , QI Z C , YU H , et al. Microstructural and mechanical properties of hot roll bonded titanium alloy/low carbon steel plate[J]. Journal of Materials Engineering and Performance, 2018, 27 (4): 1664- 1672.
doi: 10.1007/s11665-018-3279-9
17 CHAI X Y , PAN T , CHAI F , et al. Interlayer engineering for titanium clad steel by hot roll bonding[J]. Journal of Iron and Steel Research International, 2018, 25 (7): 739- 745.
doi: 10.1007/s42243-018-0106-3
18 EIZADJOU M , DANESH M H , JANGHORBAN K . Investigation of roll bonding between aluminum alloy strips[J]. Materials & Design, 2008, 29 (4): 909- 913.
19 LEE K S , LEE S E , SUNG H K , et al. Influence of reduction ratio on the interface microstructure and mechanical properties of roll-bonded Al/Cu sheets[J]. Materials Science and Engineering:A, 2013, 583, 177- 181.
doi: 10.1016/j.msea.2013.06.077
20 WANG CY , JIANG Y B , XIE J X , et al. Effect of the steel sheet surface hardening state on interfacial bonding strength of embe-dded aluminum-steel composite sheet produced by cold roll bonding process[J]. Materials Science and Engineering:A, 2016, 652, 51- 58.
doi: 10.1016/j.msea.2015.11.039
21 WRIGHT P K , SNOW D A , TAY C K . Interfacial conditions and bond strength in cold pressure welding by rolling[J]. Metals Technology, 1978, 5 (1): 24- 31.
doi: 10.1179/mt.1978.5.1.24
22 BAY N . Mechanism producing metallic bonds in cold welding[J]. Welding Journal, 1983, 62 (5): 137- 142.
23 BAY N , CLEMENSEN C , JUELSTORP O , et al. Bond strength in cold roll bonding[J]. CIRP Annals, 1985, 34 (1): 221- 224.
doi: 10.1016/S0007-8506(07)61760-0
24 ZHAO D S , YAN J C , WANG Y , et al. Relative slipping of interface of titanium alloy to stainless steel during vacuum hot roll bonding[J]. Materials Science and Engineering:A, 2009, 499 (1): 282- 286.
25 JAMAATI R , TOROGHINEJAD M R . The role of surface pre-paration parameters on cold roll bonding of aluminum strips[J]. Journal of Materials Engineering and Performance, 2011, 20 (2): 191- 197.
doi: 10.1007/s11665-010-9664-7
26 JAMAATI R , TOROGHINEJAD M R . Investigation of the parameters of the cold roll bonding (CRB) process[J]. Materials Science and Engineering:A, 2010, 527 (9): 2320- 2326.
doi: 10.1016/j.msea.2009.11.069
27 JAMAATI R , TOROGHINEJAD M R . Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process[J]. Materials & Design, 2010, 31 (9): 4508- 4513.
28 JAMAATI R , TOROGHINEJAD M R . Cold roll bonding bond strengths:review[J]. Materials Science and Technology, 2013, 27 (7): 1101- 1108.
29 王艳松, 李文亚, 杨夏炜, 等. 冷压焊界面结合机理与结合强度研究现状[J]. 材料工程, 2016, 44 (4): 119- 130.
29 WANG Y S , LI W Y , YANG X W , et al. Research status on interface bonding machanisms and strength of cold pressure welding[J]. Journal of Materials Engineering, 2016, 44 (4): 119- 130.
30 康永林, 孙建林. 轧制工程学[M]. 2版 北京: 冶金工业出版社, 2014.
30 KANG Y L , SUN J L . Rolling engineering[M]. 2nd ed Beijing: Metallurgical Industry Press, 2014.
[1] 景鹏展, 朱姝, 余木火, 袁象恺, 刘卫平, 姜正飞. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44(3): 21-27.
[2] 张伟卫, 吉玲康, 蔡庆伍, 武会宾. 高强度抗CO2腐蚀管线钢实验研究[J]. 材料工程, 2011, 0(1): 68-71.
[3] 张丁非, 戴庆伟, 胡耀波, 兰伟, 方霖. 镁合金板材轧制成型的研究进展[J]. 材料工程, 2009, 0(10): 85-90.
[4] 万怡灶, 王玉林, 成国祥, 杜希文, 罗红林, 曹阳. Al2O3/铜合金复合材料的磨损特性研究[J]. 材料工程, 1997, 0(11): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn