Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (5): 68-74    DOI: 10.11868/j.issn.1001-4381.2019.000893
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响
张淑娴1,2, 邓凌峰1,2,3, 连晓辉1,2, 谭洁慧1,2, 李金磊1,2
1. 中南林业科技大学 材料科学与工程学院, 长沙 410004;
2. 中南林业科技大学 材料表界面科学与技术湖南省重点实验室, 长沙 410004;
3. 湖南烯能新材料有限公司, 长沙 410205
Effect of micro carbon nanotubes coating on electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material
ZHANG Shu-xian1,2, DENG Ling-feng1,2,3, LIAN Xiao-hui1,2, TAN Jie-hui1,2, LI Jin-lei1,2
1. School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
2. Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China;
3. Hunan Xineng New Material Co., Ltd., Changsha 410205, China
全文: PDF(2520 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用高温固相法制备LiNi0.8Co0.1Mn0.1O2正极材料,通过混酸处理和离心过滤CNTs以得到单壁碳纳米管(SWCNTs),再添加分散剂二甲基甲酰胺(DMF)后与LiNi0.8Co0.1Mn0.1O2混合,利用超声分散与喷雾干燥法将不同量的CNTs均匀包覆在LiNi0.8Co0.1Mn0.1O2正极材料的表面。CNTs/LiNi0.8Co0.1Mn0.1O2复合材料通过SEM、XRD以及电化学测试系统进行表征和测试。结果表明CNTs包覆量为0.5%(质量分数)的CNTs/LiNi0.8Co0.1Mn0.1O2复合材料性能最佳。在0.1,5 C下的首次放电比容量分别为215.59,175.78 mAh·g-1。在0.1 C下充电、大倍率5 C下放电,CNTs/LiNi0.8Co0.1Mn0.1O2复合材料仍能保持首次放电容量的81.54%,比纯的LiNi0.8Co0.1Mn0.1O2提高了10.48%。在1 C倍率下循环100次其容量保持率可达93.02%,比纯的LiNi0.8Co0.1Mn0.1O2提升了15.42%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张淑娴
邓凌峰
连晓辉
谭洁慧
李金磊
关键词 碳纳米管LiNi0.8Co0.1Mn0.1O2微量包覆电化学性能    
Abstract:High nickel ternary cathode material LiNi0.8Co0.1Mn0.1O2 was prepared by high temperature sintering method, and the carbon nanotubes were treated in mixed acid. The single wall carbon nanotubes were obtained by centrifuging. Then dispersant (DMF)and LiNi0.8Co0.1Mn0.1O2 were mixed, and different amounts of carbon nanotubes were coated on the surface of LiNi0.8Co0.1Mn0.1O2by ultrasonic dispersion and spray drying method uniformly. CNTs/LiNi0.8Co0.1Mn0.1O2 composites were characterized and tested by SEM, XRD and electrochemical test system. The results show that the composite with 0.5%(mass fraction) carbon nanotubes has the best morphology and the best electrochemical performance. The first discharge specific capacities at different rates such as 0.1 C and 5 C are 215.587 mAh·g-1and 175.78 mAh·g-1, respectively. When charged at 0.1 C and discharged at a large rate of 5 C, the CNTs/LiNi0.8Co0.1Mn0.1O2 composites can still maintain the first discharge capacity of 81.54%, which is 10.48% higher than that of LiNi0.8Co0.1Mn0.1O2 which is not coated with carbon nanotubes. After 100 cycles at 1 C, the capacity retention rate is 93.02%, which is 15.42% higher than that of LiNi0.8Co0.1Mn0.1O2 which is not coated with carbon nanotubes.
Key wordscarbon nanotubes    LiNi0.8Co0.1Mn0.1O2    trace coating    electrochemical performance
收稿日期: 2019-09-27      出版日期: 2020-05-28
中图分类号:  TM912  
通讯作者: 邓凌峰(1970-),男,副教授,博士,主要从事能源材料的研究,联系地址:湖南省长沙市天心区韶山南路498号中南林业科技大学材料科学与工程学院(410004),E-mail:denglingfeng168@126.com     E-mail: denglingfeng168@126.com
引用本文:   
张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
ZHANG Shu-xian, DENG Ling-feng, LIAN Xiao-hui, TAN Jie-hui, LI Jin-lei. Effect of micro carbon nanotubes coating on electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. Journal of Materials Engineering, 2020, 48(5): 68-74.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000893      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/68
[1] LIANG C, KONG F, LONGO R C, et al.Unraveling the origin of instability in Ni-rich LiNi1-2xCoxMnxO2 (NCM)cathode materials[J].The Journal of Physical Chemistry, 2016, 120(12):6383-6390.
[2] JU S H, KANG I S, LEE Y S, et al.Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-conductive polymer coating[J]. ACS Applied Materials and Interfaces, 2014, 6(4):2546-2550.
[3] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transitional-metal oxide for high-energy lithium-ion batteries[J].Angewandte Chemic Electrode Materials, 2015, 54(15):4440-4457.
[4] YAN P, ZHENG J, LV D, et al. Atomic-resolution visualization of distinctive chemical mixing behavior of Ni, Co, and Mn with Li in layered lithium transition-metal oxide cathode materials[J]. Chemistry of Materials,2015, 27(15):5393-5401.
[5] 冯泽,孙旦,唐有根,等.富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2正极材料[J].化学进展,2019,31(2/3):442-454. FENG Z, SUN D, TANG Y G, et al. Rich-nickel ternary layered oxide LiNi0.8Co0.1Mn0.1O2 cathode material[J].Progress in Che-mistry, 2019, 31(2/3):442-454.
[6] LIM J M, HWANG T, KIM D, et al. Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material[J]. Scientific Reports, 2017,7:39669-39677.
[7] 李想,葛武杰,王昊,等.高镍系三元层状氧化物正极材料容量衰减机理的研究进展[J].无机材料学报,2017,32(2):113-119. LI X, GE W J, WANG H, et al. Research progress on the capacity fading mechanisms of high-nickel ternary layered oxide cathode materials[J].Journal of Inorganic Materials, 2017, 32(2):113-119.
[8] 袁颂东,杨灿星,江国栋,等.锂离子电池高镍三元材料的研究进展[J].材料工程,2019,47(10):1-8. YUAN S D, YANG C X, JIANG G D, et al. Research progress in nickel-rich ternary materials for lithium-ion batteries[J]. Journal of Materials Engineering, 2019, 47(10):1-8.
[9] LU Y, PANG M, SHI S, et al.Enhanced electrochemical properties of Zr4+-doped Li1.20[Mn0.52Ni0.20Co0.08]O2 cathode material for lithium-ion battery at elevated temperature[J].Scientific Reports, 2018, 8:2981-2983.
[10] WEIGEL T, SCHIPPER F, ERICKSON E M, etal.Structural and electrochemical aspect of LiNi0.8Mn0.1Co0.1O2 cathode materials doped by various cations[J].ACS Energy Letters, 2019, 4(2):508-514.
[11] SUSAI F A, KOVACHEVA D, CHAKRABORTY A, et al. Improving performance of LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions:theoretical and experimental studies[J].Applied Energy Materials, 2019, 2(6):4521-4532.
[12] BECKER D, BÖRNER M, NÖLLE R, et al. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries[J]. Applied Materials and Interfaces, 2019, 11(20):18404-18414.
[13] XU Y D, XIANG W, WU G Z, et al. Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodematerials by Li4Ti5O12 coating[J]. Electrochemical Acta, 2018, 268:358-360.
[14] WU Z, HAN X, ZHENG J, et al. Depolarized and fully active cathode based on Li(Ni0.5Co0.2Mn0.3)O2 embedded in carbon nanotube network for advanced batteries[J].Nano Letters, 2014, 14(8):4700-4705.
[15] 胡成果,王万录.碳纳米管的电化学性质及其应用[J].功能材料,2005,36(5):730-733. HU C G, WANG W L. Investigation of electrochemical properties and their applications on CNT electrodes[J].Journal of Functional Materials, 2005, 36(5):730-733.
[16] 邓凌峰,彭辉艳,覃昱坤,等.碳纳米管包覆量对天然石墨负极材料的电化学性能的影响[J].功能材料,2016,47(12):12129-12132. DENG L F, PENG H Y, QIN Y K, et al. Effects of CNT content on electrochemical properties of nature graphite anode materials[J].Journal of Functional Materials, 2016, 47(12):12129-12132.
[17] CHENG Q, ZHOU J, KE C, et al. Method for synthesis of zeolitic imidazolate framework-derived LiCoO2/CNTs@AlF3 with enhanced lithium storage capacity[J].Inorganic Chemistry, 2019, 58(18):11993-11996.
[18] 阮泽文.LiNi(1-x-y)CoxAlyO2高镍三元正极材料的制备与改性研究[D].哈尔滨:哈尔滨工业大学,2016. RUAN Z W.Synthesis and modification of LiNi1-x-yCoxAlyO2 nickel rich cathode materials[D]. Harbin:Harbin Institute of Technology, 2016.
[19] 李龙.锂离子电池镍钴锰三元正极材料的合成与改性[D].北京:清华大学,2012. LI L. Synthesis and modification of LiNixCoyMnZO2cathode material for lithium battery[D].Beijing:Tsinghua University, 2012.
[20] 邓凌峰,彭辉艳,覃昱坤,等.碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J].材料工程,2017,45(4):121-127. DENG L F, PENG H Y, QIN Y K, et al. Combination carbon nanotubes with graphene modified natural graphite and its electrochemical performance[J].Journal of Materials Engineering, 2017, 45(4):121-127.
[21] 刘力.锂硫电池正极材料的制备及其电化学性能的研究[D]. 石河子:石河子大学,2018. LIU L. Synthesis and electrochemical performance of sulfur-contained cathode materials for lithium sulfur batteries[D]. Shihezi:Shihezi University, 2018.
[1] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[2] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[3] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[4] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[5] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[6] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[7] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[8] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[9] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[10] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[11] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
[12] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
[13] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[14] 鲁浩, 李楠, 王海波, 廖帮全, 姜亚明, 荆妙蕾, 徐志伟, 陈莉, 张兴祥. 碳纳米管复合材料的3D打印技术研究进展[J]. 材料工程, 2019, 47(11): 19-31.
[15] 张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn