Please wait a minute...
材料工程  2020, Vol. 48 Issue (7): 24-35    DOI: 10.11868/j.issn.1001-4381.2019.000915
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
郭建强1,2,3, 李炯利1,2,3, 梁佳丰1,2, 李岳1,2, 朱巧思1,2, 王旭东1,2,3
1. 中国航发北京航空材料研究院, 北京 100095;
2. 北京石墨烯技术研究院有限公司, 北京 100094;
3. 北京市石墨烯及应用工程技术研究中心, 北京 100095
Research progress in methods and mechanisms of chemical reduction graphene oxide
GUO Jian-qiang1,2,3, LI Jiong-li1,2,3, LIANG Jia-feng1,2, LI Yue1,2, ZHU Qiao-si1,2, WANG Xu-dong1,2,3
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Institute of Graphene Technology, Beijing 100094, China;
3. Beijing Engineering Research Centre of Graphene Application, Beijing 100095, China
全文: PDF(3509 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
摘要 石墨烯物理性能优异,自被发现以来迅速引起了国内外研究者的广泛关注。石墨烯的批量生产是实现石墨烯材料应用的前提,由于氧化石墨烯具有丰富的含氧官能团,便于化学改性,生产成本低、可规模化生产,化学还原氧化石墨烯成为目前大批量制备石墨烯材料最常用的方法之一。至今已经有数十种化学还原氧化石墨烯的方法被报道,还原效果千差万别,还原机理也尚未定论。本文梳理了氧化石墨烯的主要化学还原方法,从关键反应基团的角度进行了归纳总结,论述了它们的优缺点;分析了多种氧化石墨烯的还原机理,提出氧化石墨烯化学还原的本质是羟基还原同时形成碳碳双键的过程。
E-mail Alert
关键词 石墨烯氧化石墨烯化学还原还原机理    
Abstract:The mass production of graphene sheets is a prerequisite for exploiting the applications of graphene. A major focus of experimental research has been concentrated on the development of effective approaches to produce well-defined graphene in large scale. Due to its high yield and cost efficiency, chemical reduction of graphene oxide has been proofed to be one of the most feasible approaches to achieve this goal. Graphene consists almost entirely of sp2 hybridized carbon atoms, while graphene oxide additionally contains sp3 regions, oxygen functional groups and structural defects. The fundamental understanding of the mechanism of chemical reduction of graphene oxide is a key issue when preparing graphene materials via graphene oxide precursor. Although dozens of methods have been exploited to facilitate the chemical reduction of graphene, only few studies were focused on the reduction mechanism.The chemical reduction strategies of graphene oxide, and as well as their mechanisms were reviewed in this paper. It was suggested that the core issue of the reduction is how to clarify the removal of hydroxyl groups and the simultaneous restoration of a conjugated structure.
Key wordsgraphene    graphene oxide    chemical reduction    reduction mechanism
收稿日期: 2019-10-08      出版日期: 2020-07-17
中图分类号:  TB34  
通讯作者: 王旭东(1980-),男,研究员,博士,主要研究方向为石墨烯复合材料,联系地址:北京81信箱2分箱(100095),     E-mail:
郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
GUO Jian-qiang, LI Jiong-li, LIANG Jia-feng, LI Yue, ZHU Qiao-si, WANG Xu-dong. Research progress in methods and mechanisms of chemical reduction graphene oxide. Journal of Materials Engineering, 2020, 48(7): 24-35.
链接本文:      或
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[2] AVOURIS P, DIMITRAKOPOULOS C. Graphene:synthesis and applications[J]. Materials Today, 2012, 15(3):86-97.
[3] MOHAN V B, LAU K T, HUI D, et al. Graphene-based materials and their composites:a review on production, applications and product limitations[J]. Composites:Part B, 2018, 142:200-220.
[4] YANG Z F, TIAN J R, YIN Z F, et al. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor:a review[J]. Carbon, 2019, 141:467-480.
[5] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
[6] SUN D J, LUO Y F, DEBLIQUY M, et al. Graphene-enhanced metal oxide gas sensors at room temperature:a review[J]. Beilstein Journal of Nanotechnology, 2018, 9:2832-2844.
[7] BEITOLLAHI H, SAFAEI M, TAJIK S. Application of graphene and graphene oxide for modification of electrochemical sensors and biosensors:a review[J]. International Journal of Nano Dimension, 2019, 10(2):125-140.
[8] LERF A, HE H, FORSTER M, et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry:B, 1998, 102(23):4477-4482.
[9] CHUA C K, PUMERA M. Chemical reduction of graphene oxide:a synthetic chemistry viewpoint[J]. Chemical Society Reviews, 2014, 43(1):291-312.
[10] DE SILVA K K H, HUANG H H, JOSHI R K, et al. Chemical reduction of graphene oxide using green reductants[J]. Carbon, 2017, 119:190-199.
[11] PEI S F, CHENG H M. The reduction of graphene oxide[J]. Carbon, 2012, 50(9):3210-3228.
[12] BRODIE B C. On the atomic weight of graphite[M]. London:Philosophical Transactions of the Royal Society of London, 1859:249-259.
[13] STAUDENMAIER L. Method for the preparation of graphitic acid[J]. Ber Dtsch Chem Ges, 1898, 31:1481-1487.
[14] HOFMANN U, KÖNIG E. Untersuchungen über graphitoxyd[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1937, 234(4):311-336.
[15] HUMMERS Jr W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1334-1339.
[16] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8):4806-4814.
[17] DIMIEV A M, TOUR J M. Mechanism of graphene oxide formation[J]. ACS Nano, 2014, 8(3):3060-3068.
[18] DIMIEV A, KOSYNKIN D V, ALEMANY L B, et al. Pristine graphite oxide[J]. Journal of the American Chemical Society, 2012, 134(5):2815-2822.
[19] KANG J H, KIM T, CHOI J, et al. Hidden second oxidation step of Hummers method[J]. Chemistry of Materials, 2016, 28(3):756-764.
[20] KRISHNAMOORTHY K, VEERAPANDIAN M, YUN K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J].Carbon,2013,53:38-49.
[21] SZABÓ T, BERKESI O, FORGÓ P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials, 2006, 18(11):2740-2749.
[22] VOIRY D, YANG J, KUPFERBERG J, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science, 2016, 353(6306):1413-1416.
[23] GÓMEZ-NAVARRO C, MEYER J C, SUNDARAM R S, et al. Atomic structure of reduced graphene oxide[J]. Nano Letters, 2010, 10(4):1144-1148.
[24] GAO W, ALEMANY L B, CI L, et al. New insights into the structure and reduction of graphite oxide[J]. Nature Chemistry, 2009, 1(5):403.
[25] ERICKSON K, ERNI R, LEE Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40):4467-4472.
[26] ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-3924.
[27] MAHANTA N K, ABRAMSON A R. Thermal conductivity of graphene and graphene oxide nanoplatelets[C]//13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2012:1-6.
[28] FEHER F. Handbook of preparative inorganic chemistry[M]. NY:Academic Press, 1963:418.
[29] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
[30] LI D, MVLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3:101.
[31] GAO X F, JANG J, NAGASE S. Hydrazine and thermal reduction of graphene oxide:reaction mechanisms, product structures, and reaction design[J]. Journal of Physical Chemistry:C, 2010, 114(2):832-842.
[32] STANKOVICH S, DIKIN D A, DOMMETT G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282.
[33] YUN J M, YEO J S, KIM J, et al. Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells[J]. Advanced Materials, 2011, 23(42):4923-4928.
[34] FAN X B, PENG W C, LI Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation[J]. Advanced Materials, 2008, 20(23):4490-4493.
[35] ZHOU X, ZHANG J, WU H, et al. Reducing graphene oxide via hydroxylamine:a simple and efficient route to graphene[J]. Journal of Physical Chemistry:C, 2011, 115(24):11957-11961.
[36] LIU S, TIAN J, WANG L, et al. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection[J]. Carbon, 2011, 49(10):3158-3164.
[37] AMARNATH C A, HONG C E, KIM N H, et al. Efficient synthesis of graphene sheets using pyrrole as a reducing agent[J]. Carbon, 2011, 49(11):3497-3502.
[38] CHEN Y, ZHANG X, YU P, et al. Stable dispersions of graphene and highly conducting graphene films:a new approach to creating colloids of graphene monolayers[J]. Chemical Communications, 2009,30:4527-4529.
[39] LEI Z, LU L, ZHAO X. The electrocapacitive properties of graphene oxide reduced by urea[J]. Energy & Environmental Science, 2012, 5(4):6391-6399.
[40] SU P, GUO H L, TIAN L, et al. An efficient method of producing stable graphene suspensions with less toxicity using dimethyl ketoxime[J]. Carbon, 2012, 50(15):5351-5358.
[41] SHEN X, JIANG L, JI Z, et al. Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant[J]. Journal of Colloid and Interface Science, 2011, 354(2):493-497.
[42] CHE J, SHEN L, XIAO Y. A new approach to fabricate graphene nanosheets in organic medium:combination of reduction and dispersion[J]. Journal of Materials Chemistry, 2010, 20(9):1722-1727.
[43] GAO J, LIU F, LIU Y L, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid[J]. Chemistry of Materials, 2010, 22(7):2213-2218.
[44] CHEN D, LI L, GUO L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid[J]. Nanotechnology, 2011, 22(32):325601.
[45] BOSE S, KUILA T, MISHRA A K, et al. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene:an environmentally friendly method[J]. Journal of Materials Chemistry, 2012, 22(19):9696-9703.
[46] MA J, WANG X, LIU Y, et al. Reduction of graphene oxide with l-lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte[J]. Journal of Materials Chemistry:A, 2013, 1(6):2192-2201.
[47] TRAN D N H, KABIRI S, LOSIC D. A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids[J]. Carbon, 2014, 76:193-202.
[48] WANG J, SALIHI E C, ŠILLER L. Green reduction of graphene oxide using alanine[J]. Materials Science and Engineering:C, 2017, 72:1-6.
[49] PHAM T A, KIM J S, KIM J S, et al. One-step reduction of graphene oxide with L-glutathione[J]. Colloids and Surfaces:A, 2011, 384(1/3):543-548.
[50] XU L Q, YANG W J, NEOH K G, et al. Dopamine-induced reduction and functionalization of graphene oxide nanosheets[J]. Macromolecules, 2010, 43(20):8336-8339.
[51] MOON I K, LEE J, RUOFF R S, et al. Reduced graphene oxide by chemical graphitization[J]. Nature Communications, 2010, 1:6.
[52] PEI S, ZHAO J, DU J, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon, 2010, 48(15):4466-4474.
[53] CHEN W, YAN L, BANGAL P R. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds[J]. Journal of Physical Chemistry:C, 2010, 114(47):19885-19890.
[54] SU Y, GAO X, ZHAO J. Reaction mechanisms of graphene oxide chemical reduction by sulfur-containing compounds[J]. Carbon, 2014, 67:146-155.
[55] NAKAGAWA K, MINAMI K. Reduction of organic compounds with thiourea dioxide Ⅰ reduction of ketones to secondary alcohols[J]. Tetrahedron Letters, 1972, 13(5):343-346.
[56] CHUA C K, AMBROSI A, PUMERA M. Graphene oxide reduction by standard industrial reducing agent:thiourea dioxide[J]. Journal of Materials Chemistry, 2012, 22:11054-11061.
[57] WANG Y, SUN L, FUGETSU B. Thiourea dioxide as a green reductant for the mass production of solution-based graphene[J]. Bulletin of the Chemical Society of Japan, 2012, 85(12):1339-1344.
[58] MA Q, SONG J, JIN C, et al. A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid[J]. Carbon, 2013, 54:36-41.
[59] CHUA C K, PUMERA M. Selective removal of hydroxyl groups from graphene oxide[J]. Chemistry-A European Journal, 2013, 19(6):2005-2011.
[60] MELLON M, MANGADLAO J, ADVINCULA R, et al. The pH dependent reactions of graphene oxide with small molecule thiols[J]. RSC Advances, 2018, 8(33):18388-18395.
[61] DREYER D R, MURALI S, ZHU Y, et al. Reduction of graphite oxide using alcohols[J]. Journal of Materials Chemistry, 2011, 21(10):3443-3447.
[62] ZHANG J, YANG H, SHEN G, et al. Reduction of graphene oxide via L-ascorbic acid[J]. Chemical Communications, 2010, 46(7):1112-1114.
[63] FERNANDEZ-MERINO M J, GUARDIA L, PAREDES J I, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J]. Journal of Physical Chemistry:C, 2010, 114(14):6426-6432.
[64] ZHU C, GUO S, FANG Y, et al. Reducing sugar:new functional molecules for the green synthesis of graphene nanosheets[J]. ACS Nano, 2010, 4(4):2429-2437.
[65] LI B, JIN X, LIN J, et al. Green reduction of graphene oxide by sugarcane bagasse extract and its application for the removal of cadmium in aqueous solution[J]. Journal of Cleaner Production, 2018, 189:128-134.
[66] WANG G, YANG J, PARK J, et al. Facile synthesis and characterization of graphene nanosheets[J]. The Journal of Physical Chemistry:C, 2008, 112(22):8192-8195.
[67] LI J, XIAO G, CHEN C, et al. Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer[J]. Journal of Materials Chemistry:A, 2013, 1(4):1481-1487.
[68] WANG Y, SHI Z, YIN J. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites[J]. ACS Applied Materials & Interfaces, 2011, 3(4):1127-1133.
[69] SHIN H J, KIM K K, BENAYAD A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Advanced Functional Materials, 2009, 19(12):1987-1992.
[70] SI Y, SAMULSKI E T. Synthesis of water soluble graphene[J]. Nano Letters, 2008, 8(6):1679-1682.
[71] MUSZYNSKI R, SEGER B, KAMAT P V. Decorating graphene sheets with gold nanoparticles[J]. Journal of Physical Chemistry:C, 2008, 112(14):5263-5266.
[72] GUEX L G, SACCHI B, PEUVOT K F, et al. Experimental review:chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry[J]. Nanoscale, 2017, 9(27):9562-9571.
[73] CHUA C K, PUMERA M. Reduction of graphene oxide with substituted borohydrides[J]. Journal of Materials Chemistry:A, 2013, 1(5):1892-1898.
[74] PHAM V H, HUR S H, KIM E J, et al. Highly efficient reduction of graphene oxide using ammonia borane[J]. Chemical Communications, 2013, 49(59):6665-6667.
[75] AMBROSI A, CHUA C K, BONANNI A, et al. Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides[J]. Chemistry of Materials, 2012, 24(12):2292-2298.
[76] KANG S S, ZHUANG J Y, KANG S H, et al. Synthesis of high-quality graphene with enhanced electrochemical properties by two-step reduction method[J]. Ceramics International, 2019,45(18):23954-23965.
[77] FAN Z, WANG K, WEI T, et al. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder[J]. Carbon, 2010, 48(5):1686-1689.
[78] FAN Z J, KAI W, YAN J, et al. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide[J]. ACS Nano, 2010, 5(1):191-198.
[79] LIU P, HUANG Y, WANG L. A facile synthesis of reduced graphene oxide with Zn powder under acidic condition[J]. Materials Letters, 2013, 91:125-128.
[80] DEY R S, HAJRA S, SAHU R K, et al. A rapid room temperature chemical route for the synthesis of graphene:metal-mediated reduction of graphene oxide[J]. Chemical Communications, 2012, 48(12):1787-1789.
[81] KUMAR N A, GAMBARELLI S, DUCLAIROIR F, et al. Synthesis of high quality reduced graphene oxide nanosheets free of paramagnetic metallic impurities[J]. Journal of Materials Chemistry:A, 2013, 1(8):2789-2794.
[82] PHAM V H, PHAM H D, DANG T T, et al. Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen[J]. Journal of Materials Chemistry, 2012, 22(21):10530-10536.
[83] LIU Y, LI Y, ZHONG M, et al. A green and ultrafast approach to the synthesis of scalable graphene nanosheets with Zn powder for electrochemical energy storage[J]. Journal of Materials Chemistry, 2011, 21(39):15449-15455.
[84] FENG H, CHENG R, ZHAO X, et al. A low-temperature method to produce highly reduced graphene oxide[J]. Nature Communications, 2013, 4:1539.
[85] ENG A Y S, SOFER Z, HUBER Š, et al. Hydrogenated graphenes by Birch reduction:influence of electron and proton sources on hydrogenation efficiency, magnetism, and electrochemistry[J]. Chemistry-A European Journal, 2015, 21(47):16828-16838.
[86] SALAS E C, SUN Z, LÜTTGE A, et al. Reduction of graphene oxide via bacterial respiration[J]. ACS Nano, 2010, 4(8):4852-4856.
[87] AKHAVAN O, GHADERI E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner[J]. Carbon, 2012, 50(5):1853-1860.
[88] KHANRA P, KUILA T, KIM N H, et al. Simultaneous bio-functionalization and reduction of graphene oxide by baker's yeast[J]. Chemical Engineering Journal, 2012, 183:526-533.
[89] LIU J, FU S, YUAN B, et al. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide[J]. Journal of the American Chemical Society, 2010, 132(21):7279-7281.
[90] ESFANDIAR A, AKHAVAN O, IRAJIZAD A. Melatonin as a powerful bio-antioxidant for reduction of graphene oxide[J]. Journal of Materials Chemistry, 2011, 21(29):10907-10914.
[91] KARTICK B, SRIVASTAVA S. Green synthesis of graphene[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(6):4320-4324.
[92] HAGHIGHI B, TABRIZI M A. Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications[J]. RSC Advances, 2013, 3(32):13365-13371.
[93] KUILA T, BOSE S, KHANRA P, et al. A green approach for the reduction of graphene oxide by wild carrot root[J]. Carbon, 2012, 50(3):914-921.
[94] TAVAKOLI F, SALAVATI-NIASARI M, MOHANDES F. Green synthesis and characterization of graphene nanosheets[J]. Materials Research Bulletin, 2015, 63:51-57.
[95] BO Z, SHUAI X, MAO S, et al. Green preparation of reduced graphene oxide for sensing and energy storage applications[J]. Scientific Reports, 2014, 4:4684.
[96] MUTHOOSAMY K, BAI R G, ABUBAKAR I B, et al. Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy[J]. International Journal of Nanomedicine, 2015, 10:1505-1519.
[97] THAKUR S, KARAK N. Green reduction of graphene oxide by aqueous phytoextracts[J]. Carbon, 2012, 50(14):5331-5339.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[3] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[6] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[7] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[8] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[9] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[10] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[11] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[12] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[13] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[14] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[15] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持