Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (10): 60-67    DOI: 10.11868/j.issn.1001-4381.2019.000931
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
航天器用氰酸酯基胶黏剂的固化模型及固化工艺设计
何端鹏, 高鸿, 邢焰, 李岩, 王向轲
中国空间技术研究院 材料可靠性中心, 北京 100094
Curing model and process parameters of cyanate ester resin based adhesives for spacecraft
HE Duan-peng, GAO Hong, XING Yan, LI Yan, WANG Xiang-ke
Material Reliability Center, China Academy of Space Technology, Beijing 100094, China
全文: PDF(2778 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用非等温DSC法对氰酸酯胶黏剂的固化反应行为以及固化动力学进行了研究。利用Kissinger和Flynn-Wall-Ozawa动力学模型计算得到体系固化反应的表观活化能分别为101.3 kJ·mol-1及99.4 kJ·mol-1,通过Crane模型计算出固化反应级数为0.92,并构建了体系固化度与温度及时间关系的固化模型。利用"T-β"及"t-β"外推法获得体系固化反应温度及固化时间,强度实验证实了工艺参数设计的有效性。研究结果可为氰酸酯基胶黏剂的固化工艺及应用提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何端鹏
高鸿
邢焰
李岩
王向轲
关键词 氰酸酯固化温度固化时间固化度KissingerFlynn-Wall-OzawaCrane    
Abstract:The non-isothermal reaction kinetics of cyanate ester system was investigated by dynamic differential scanning calorimetry (DSC). The analysis of non-isothermal data was carried out by using the model-fitting Kissinger, Flynn-Wall-Ozawa, and Crane methods. The results indicate that the apparent activation energy of the curing reaction is 101.3 kJ·mol-1 and 99.4 kJ·mol-1calculated from Kissinger and Flynn-Wall-Ozawa models, respectively. The reaction sequence of the adhesive is 0.92 calculated from Crane model. In addition, the relationship of the curing degree with the curing temperature and the curing time is established. The curing parameters are obtained by adopting "T-β" and "t-β" extrapolation, and the strength test proves the validity of the curing parameters designed in this paper. These results constitute a theoretical basis for the curing and application of the cyanate ester adhesives.
Key wordscyanate ester    curing temperature    curing time    curing degree    Kissinger    Flynn-Wall-Ozawa    Crane
收稿日期: 2019-10-11      出版日期: 2020-10-17
中图分类号:  TB433.4  
通讯作者: 何端鹏(1990-),男,工程师,硕士,从事材料质保技术及先进航天材料研究,联系地址:北京市朝阳区民族园路5号五院物资部材料工程总体室(100029),E-mail:hedp09@163.com     E-mail: hedp09@163.com
引用本文:   
何端鹏, 高鸿, 邢焰, 李岩, 王向轲. 航天器用氰酸酯基胶黏剂的固化模型及固化工艺设计[J]. 材料工程, 2020, 48(10): 60-67.
HE Duan-peng, GAO Hong, XING Yan, LI Yan, WANG Xiang-ke. Curing model and process parameters of cyanate ester resin based adhesives for spacecraft. Journal of Materials Engineering, 2020, 48(10): 60-67.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000931      或      http://jme.biam.ac.cn/CN/Y2020/V48/I10/60
[1] NAIR C P R, MATHEW D, NINAN K N. Cyanate ester resins, recent developments[M]//New polymerization techniques and synthetic methodologies. Berlin:Springer,2001:1-99.
[2] HE M L. Epoxy resins and adhesives[M]. Beijing:China Petrochemical Press, 2004.
[3] GAN L, SUN Z J, GU Y Z. Epoxy resin curing reaction studied by dynamic and isothermal model free kinetics[J]. Acta Polymerica Sinica, 2010, 8:1016-1022.
[4] 闫红强. 新型双马来酰亚胺三嗪树脂的合成、结构性能及其应用的研究[D].杭州:浙江大学,2004. YAN H Q. Study on synthesis, relation between properties and structure and application of novel bismaleimide triazine resins[D]. Hangzhou:Zhejiang University, 2004.
[5] 谌香秀. 阻燃高性能热固性树脂及其玻璃纤维布增强复合材料的研究[D]. 苏州:苏州大学, 2015. CHEN X X. Flame-retarding high performance thermosetting resins and their glass fiber composites[D]. Suzhou:Soochow University, 2015.
[6] PU L, HUANG X, WANG W, et al. Strategy to achieve ultralow dielectric constant for polyimide:introduction of fluorinated blocks and fluorographene nanosheets by in situ polymerization[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(15):14679-14686.
[7] 钟翔屿,包建文,陈祥宝,等. 改性氰酸酯树脂体系韧性及介电性能研究[J]. 材料工程, 2006(1):38-42. ZHONG X Y, BAO J W, CHEN X B, et al. Study on toughness and dielectric property of modified cyanate ester resin[J]. Journal of Materials Engineering, 2006(1):38-42.
[8] 商宇飞. 低介电笼型倍半硅氧烷改性氰酸酯-环氧树脂复合材料的制备和表征[D]. 北京:北京化工大学, 2008. SHANG Y F. The synthesis and characterization of low-dielectric epoxy-cyanate ester/polyhedral oligomeric silsesquioxane composites[D]. Beijing:Beijing University of Chemical Technology, 2015.
[9] 王义,吴永光,林仁宗. 含磷酚醛树脂的合成与表征[J]. 热固性树脂, 2014, 29(3):21-24. WANG Y, WU Y G, LIN R Z. Synthesis and characterization of phosphorus-containing phenolic resin[J]. Thermosetting Resin, 2014, 29(3):21-24.
[10] CHEN X X, YUAN L, LIANG G Z, et al. Flame retarding cyanate ester resin with low curing temperature, high thermal resistance, outstanding dielectric property and low water absorption for high frequency and high speed printed circuit broads[J]. Industrial & Engineering Chemistry Research, 2015, 54:1806-1815.
[11] 李洪峰. 结构-功能一体化耐高温氰酸酯树脂改性及胶膜的研究[D].哈尔滨:东北林业大学,2017. LI H F. Study on integrated structure and function of modified cyanate ester resin with high temperature resistance and its adhesive film[D].Harbin:Northeast Forestry University, 2017.
[12] LASKOSKI M, DoMINGUEZ D D, KELLER T M. Synthesis and properties of a liquid oligomeric cyanate ester resin[J]. Polymer, 2006, 47(11):3727-3733.
[13] 王冠,付刚,吴健伟,等. 氰酸酯基耐高温低介电载体胶膜的制备与性能[J]. 宇航材料工艺, 2008(2):12-16. WANG G, FU G, WU J W, et al. Preparation and properties of high temperature resistant and low dielectric loss cyanate ester resin based structural adhesive film[J]. Aerospace Materials and Technology, 2008(2):12-16.
[14] 乔海涛,包建文,钟翔宇,等. 氰酸酯树脂的改性与固化特性的热分析[J]. 航空材料学报, 2019, 39(6):63-72. QIAO H T, BAO J W, ZHONG X Y, et al. Modification and thermal analysis for curing properties of cyanate-ester resin[J]. Journal of Aeronautical Materials, 2019, 39(6):63-72.
[15] 秦滢杰,韩建平,陈书华. 一种氰酸酯-环氧树脂作为卫星结构件复合材料基体的评价[J]. 复合材料学报, 2018, 35(3):528-536. QIN Y J, HAN J P, CHEN S H. Evaluation of a cyanate ester-epoxy resin as the matrix of composites used for structural components of satellite[J]. Acta Materiae Compositae Sinica, 2018, 35(3):528-536.
[16] 乔海涛,梁滨,张军营,等. 先进复合材料结构胶接体系的研发与应用[J]. 材料工程, 2018, 46(12):38-47. QIAO H T, LIANG B, ZHANG J Y, et al. Development and application of adhesive materials for advanced composite bonding[J]. Journal of Materials Engineering, 2018, 46(12):38-47.
[17] 张艳华,孟运东,周久红,等. 异氰酸酯改性环氧树脂固化过程的二维红外相关光谱研究[J]. 热固性树脂, 2015, 30(2):50-53. ZHANG Y H, MENG Y D, ZHOU J H, et al. Study on the curing process of isocyanate modified epoxy resin by two-dimensional infrared correlation spectroscopy[J]. Thermosetting Resin, 2015, 30(2):50-53.
[18] 王云英,张建明,孟江燕,等. 紫外光照射对新型双马来酰亚胺基复合材料性能的影响[J]. 工程塑料应用, 2012,40(3):69-72. WANG Y Y, ZHANG J M, MENG J Y, et al. effect of ultraviolet irradiation on properties of novel model BMI matrix composites[J]. Engineering Plastics Application, 2012,40(3):69-72.
[19] 马玉春,孟庆荣,张留成. 液晶双马来酰亚胺/二胺基二苯醚齐聚物的研究[J]. 高校化学工程学报, 2008, 22(2):247-251. MAY C, MENG Q R, ZHANG L C. Study on liquid crystalline copolymer of bismaleimide/diaminodiphenyl ether[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(2):247-251.
[20] 温培刚,张连旺,钟翔屿,等. 4211环氧树脂体系性能研究[J]. 航空材料学报, 2016, 36(2):51-55. WEN P G, ZHANG L W, ZHONG X Y, et al. Study on 4211 epoxy resin system[J]. Journal of Aeronautical Materials, 2016, 36(2):51-55.
[21] 王灵侠,马晓燕,金龙,等. 碱性EPb-POSS增韧E-51/DDS环氧树脂的研究[J]. 材料工程,2016, 44(11):33-38. WANG L X, MA X Y, JIN L, et al. Properties of E-51/DDS epoxy resin toughened by alkaline EPb-POSS[J]. Journal of Materials Engineering, 2016, 44(11):33-38.
[22] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11):1702-1706.
[23] FLYNN J H, WALL L A. General treatment of the thermogravimetry of polymers[J]. J Res Nat Bur Stand, 1966, 70:487-523.
[24] OZAWA T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11):1881-1886.
[25] CRANE L W, DYNES P J, KAELBLE D H. Analysis of curing kinetics in polymer composites[J]. Journal of polymer Science:Polymer Letters Edition, 1973, 11(8):533-540.
[26] 任志东,郝思嘉,邢悦,等. 氧化石墨烯改性环氧树脂及其复合材料的性能[J]. 航空材料学报, 2019, 39(2):25-32. REN Z D, HAO S J, XING Y, et al. Properties of graphene oxide modified epoxy resin and its composites[J]. Journal of Aeronautical Materials, 2019, 39(2):25-32.
[1] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[2] 乔海涛, 梁滨, 张军营, 刘清方, 陆松, 赵升龙, 张瑞秀. 先进复合材料结构胶接体系的研发与应用[J]. 材料工程, 2018, 46(12): 38-47.
[3] 杨一林, 卢珣, 王巍巍, 蒋智杰. 热可逆自修复聚氨酯弹性体的制备及表征[J]. 材料工程, 2017, 45(8): 1-8.
[4] 王鑫, 赵雷, 杜星, 方伟, 何漩, 叶林峰. 含有机胶凝剂的Al2O3-SiO2系泡沫料浆的流变性能与固化特性[J]. 材料工程, 2017, 45(12): 106-111.
[5] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[6] 马豪, 李岩, 王迪, 陆超. 固化温度对亚麻纤维及其增强复合材料力学性能的影响[J]. 材料工程, 2015, 43(10): 14-19.
[7] 薛洁, 叶菊华, 管清宝, 刘萍, 梁国正. 电子封装用氰酸酯复合材料的研究[J]. 材料工程, 2013, 0(4): 63-67.
[8] 王晓霞, 王成国, 贾玉玺, 罗玲. 热固性树脂固化动力学模型简化的新方法[J]. 材料工程, 2012, 0(6): 67-70.
[9] 卢志国, 林建平, 张宝文. 车身铝合金板胶接接头固化度解析预测研究[J]. 材料工程, 2011, 0(7): 15-19.
[10] 孙卫红, 晏欣, 朱锡, 周立清. P(VAc-co-TAIC)大孔树脂颗粒的制备及声学性能[J]. 材料工程, 2011, 0(1): 33-37.
[11] 胡建平, 蔡吉喆, 肇研, 刘建华. Nomex/氰酸酯树脂夹层复合材料耐湿热性研究[J]. 材料工程, 2010, 0(9): 58-61.
[12] 任鹏刚, 梁国正, 张增平. 双酚A型二氰酸酯及其环氧改性体系的反应性研究[J]. 材料工程, 2008, 0(4): 27-32,37.
[13] 唐玉生, 梁国正, 孔杰, 顾军渭. 硼酸铝晶须改性氰酸酯树脂体系的研究[J]. 材料工程, 2006, 0(7): 28-30,34.
[14] 姚雪丽, 马晓燕, 屈小红, 覃宇夏, 陈芳. 纳米SiO2增韧增强氰酸酯制备工艺的研究[J]. 材料工程, 2006, 0(5): 3-6,11.
[15] 钟翔屿, 包建文, 陈祥宝, 李晔. 改性氰酸酯树脂体系韧性及介电性能研究[J]. 材料工程, 2006, (1): 38-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn