Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (3): 59-66    DOI: 10.11868/j.issn.1001-4381.2019.000955
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
纳米级Li4Ti5O12负极材料的制备及其输运特性
廉恬柔, 卢玉晓, 吴冰, 石光跃, 马蕾, 刘磊, 娄建忠()
河北大学 电子信息工程学院 河北省类脑神经器件与系统重点实验室, 河北 保定 071002
Preparation and transport property of nano-Li4Ti5O12 anode materials
Tian-rou LIAN, Yu-xiao LU, Bing WU, Guang-yue SHI, Lei MA, Lei LIU, Jian-zhong LOU()
Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic Information Engineering, Hebei University, Baoding 071002, Hebei, China
全文: PDF(10541 KB)   HTML ( 1 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以酞酸丁酯和乙酸锂为前驱体,通过溶胶凝胶法成功制备了纳米钛酸锂Li4Ti5O12(LTO)负极材料。采用X射线衍射分析、扫描电镜(SEM)和透射电镜(TEM)分别对材料的物相与形貌进行了表征分析,并研究了煅烧条件和包覆改性对LTO输运特性的影响。研究表明,煅烧温度为800℃,时间为10 h条件下制备的样品的输运特性最佳,离子电导率为8.8×10-8 S/cm,电子电导率为8.53×10-10 S/cm。均匀的碳包覆层可以有效地改善样品的输运特性,LTO/C复合活性材料的离子与电子电导率分别达到4.35×10-7 S/cm和9.63×10-8 S/cm。电化学性能测试表明,碳包覆后的活性材料在0.1 C倍率下首次放电容量可达172.4 mAh/g;在5 C高倍率下循环充放电50次后,容量保持率可达94.4%,表现出较好的电化学性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
廉恬柔
卢玉晓
吴冰
石光跃
马蕾
刘磊
娄建忠
关键词 溶胶凝胶法负极材料钛酸锂电导率    
Abstract

Li4Ti5O12 (LTO) anode materials are successfully prepared by sol-gel method using butyl phthalate and lithium acetate as precursors.The phase and morphology of the material were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The effects of calcination conditions and coating modification on transport properties of LTO were also studied.The results show that the ionic conductivity and electronic conductivity of the sample prepared at 800 ℃ and 10 h are 8.8×10-8 S/cm and 8.53×10-10 S/cm, respectively. The ionic and electronic conductivities of LTO/C are 4.35×10-7 S/cm and 9.63×10-8 S/cm, respectively.The electrochemical performance tests show that the first discharge capacity of carbon-coated active materials can reach 172.4 mAh/g at the ratio of 0.1 C.After 50 cycles at 5 C, the capacity retention rate can reach 94.4%, indicating a good electrochemical performance of the samples.

Key wordssol-gel method    anode material    lithium titanate    conductivity
收稿日期: 2020-10-17      出版日期: 2021-03-20
中图分类号:  TM912  
  O484.3  
基金资助:天津市重点研究开发项目(19YFHBQY00030);河北省自然科学基金(F2017201130)
作者简介: 娄建忠(1966-), 男, 教授, 博士, 研究方向为半导体材料、锂离子电池, 联系地址: 河北省保定市七一东路2666号河北大学电子信息工程学院(071002), E-mail: jzhlou@163.com
引用本文:   
廉恬柔, 卢玉晓, 吴冰, 石光跃, 马蕾, 刘磊, 娄建忠. 纳米级Li4Ti5O12负极材料的制备及其输运特性[J]. 材料工程, 2021, 49(3): 59-66.
Tian-rou LIAN, Yu-xiao LU, Bing WU, Guang-yue SHI, Lei MA, Lei LIU, Jian-zhong LOU. Preparation and transport property of nano-Li4Ti5O12 anode materials. Journal of Materials Engineering, 2021, 49(3): 59-66.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000955      或      http://jme.biam.ac.cn/CN/Y2021/V49/I3/59
Fig.1  不同煅烧条件下合成LTO的XRD谱图
(a)不同温度下煅烧10 h后产物的XRD谱图;(b) 在800 ℃下不同煅烧时间后产物的XRD谱图
Fig.2  不同煅烧温度下合成LTO的SEM图
(a)600 ℃;(b)700 ℃;(c)800 ℃;(d)900 ℃
Fig.3  LTO/C样品物相与形貌分析
(a)SEM图;(b)TEM图;(c) 高分辨图像与选区电子衍射斑点
Fig.4  不同煅烧条件下的LTO本征电导率
(1)煅烧温度和时间对LTO交流阻抗的影响;(2)煅烧温度和时间对LTO电子电导率的影响;(a)煅烧温度; (b)煅烧时间;(c)LTO离子电导率在不同煅烧条件下的变化趋势;(d)LTO电子电导率在不同煅烧条件下的变化趋势
Fig.5  不同煅烧条件下LTO/C的电导率
(1)煅烧温度和时间对LTO/C交流阻抗的影响;(2)煅烧温度和时间对LTO/C电子电导率的影响;(a)煅烧温度; (b)煅烧时间; (c)LTO/C离子电导率在不同煅烧条件下的变化趋势;(d)LTO/C电子电导率在不同煅烧条件下的变化趋势
Fig.6  以LTO与LTO/C为负极材料制成的半电池的化学性能
(a)0.1 C倍率下首次充放电测试图;(b)倍率性能;(c)5 C倍率下的循环性能分析
Material Preparation method First discharge capacityat 1 C/(mAh·g-1) Capacity retention rate/%(corresponding charge dischargeratio/cycle times) Reference
NMP-Li4Ti5O12 Hydrothermal 162 >90 (10 C/200) [2]
NMP-Li4Ti5O12/C Hydrothermal 165 >90 (10 C/200) [2]
Li4Ti5O12/C Sol gel 166.7 [9]
Li4Ti5O12/C Sol gel 174.7 >90 (0.5 C/50) [11]
Li4Ti5O12/C Sol gel 160.7 99.7 (2 C/20) [13]
Li4Ti4.95Ta0.05O12 Solid method 161.9 93.7 (1 C/100) [16]
Li4Ti4.95Mo0.05O12 Solid method 161.7 94.2 (1 C/100) [17]
Li4Ti5O12/C Hydrothermal 168 96.3(0.5 C/50) [20]
Li4Ti5O12/C Sol gel 169 94.4(5 C/50) This paper
Table 1  Li4Ti5O12负极材料的电化学性能
1 张遥遥, 王丹, 汪元元, 等. 高能球磨辅助固相法制备Zr掺杂的钛酸锂[J]. 稀有金属材料与工程, 2014, 43 (9): 2237- 2241.
1 ZHANG Y Y , WANG D , WANG Y Y , et al. Preparation of Zr doped lithium titanate by high energy ball milling assisted solidstate method[J]. Rare Metal Materials and Engineering, 2014, 43 (9): 2237- 2241.
2 董海勇, 贺艳兵, 李宝华, 等. 高结晶度片状钛酸锂/石墨烯复合材料的可控制备及其电化学性能[J]. 新型炭材料, 2016, 31 (2): 115- 120.
2 DONG H Y , HE Y B , LI B H , et al. Controllable preparation and electrochemical properties of high crystallinity lamellar lithium titanate/graphene composites[J]. New Carbon Materials, 2016, 31 (2): 115- 120.
3 孙兵, 蒋尚, 王润伟, 等. 高性能钛酸锂/还原氧化石墨烯复合负极材料的合成与应用[J]. 高等学校化学学报, 2018, 39 (12): 2767- 2773.
doi: 10.7503/cjcu20180250
3 SUN B , JIANG S , WANG R W , et al. Synthesis and application of high performance lithium titanate/reduced graphene oxide composite anode materials[J]. Chemical Journal of Chinese Universities, 2018, 39 (12): 2767- 2773.
doi: 10.7503/cjcu20180250
4 SUN Y K , JUNG D J , LEE Y S , et al. Synthesis and electrochemical characterization of spinel Li[Li(1-x)/3CrxTi(5-2x)/3]O4 anode materials[J]. Journal of Power Sources, 2004, 125, 242- 245.
doi: 10.1016/j.jpowsour.2003.08.013
5 WANG J , LIU X M , YANG H . Synthesis and electrochemical properties of highly dispersed Li4Ti5O12 nanocrystalline for lithium secondary batteries transactions of nonferrous[J]. Transactions of Nonferrous Metals Society of China, 2012, 22 (3): 613- 620.
doi: 10.1016/S1003-6326(11)61222-3
6 FANG W , CHENG X Q , ZUO P J , et al. Hydrothermal-assisted sol-gel synthesis of Li4Ti5O12/C nano-composite for high-energy lithium-ion batteries[J]. Solid State Ionics, 2013, 244, 52- 56.
doi: 10.1016/j.ssi.2013.04.025
7 LEONIDOV I A , LEONIDOVA O N , PERELYAEVA L A , et al. Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12[J]. Physics of the Solid State, 2003, 45 (11): 2183- 2188.
doi: 10.1134/1.1626760
8 SHI Q , LIU L J , OUYANG C Y , et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations[J]. Physical Review B, 2003, 68, 195108.
doi: 10.1103/PhysRevB.68.195108
9 WANG C , LI H , FU A , et al. An RAPET approach to in situ synthesis of carbon modified Li4Ti5O12 anode nanocrystals with improved conductivity[J]. New Journal of Chemistry, 2014, 38, 616- 623.
doi: 10.1039/C3NJ01319G
10 WOLFENSTINE J , ALLEN J L . Electrical conductivity and charge compensation in Ta doped Li4Ti5O12[J]. Journal of Power Sources, 2008, 180, 582- 585.
doi: 10.1016/j.jpowsour.2008.02.019
11 HUANG S H , WEN Z Y , ZHU X J , et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12[J]. Electrochemistry Communications, 2004, 6, 1093- 1097.
doi: 10.1016/j.elecom.2004.08.013
12 HUANG S H , WEN Z Y , ZHU X J , et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries[J]. Journal of Power Sources, 2007, 165, 408- 412.
doi: 10.1016/j.jpowsour.2006.12.010
13 WOLFENSTINE J , LEE U , ALLEN J L . Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere[J]. Journal of Power Sources, 2006, 154, 287- 289.
doi: 10.1016/j.jpowsour.2005.12.044
14 YAN B , LI M , LI X , et al. Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode[J]. Journal of Materials Chemistry A, 2015, 3, 11773- 11781.
doi: 10.1039/C5TA00887E
15 张欢, 其鲁, 高学平, 等. 离子交换法合成纳米级锂离子电池负极材料Li4Ti5O12[J]. 无机化学学报, 2010, 26 (9): 1539- 1543.
15 ZHANG H , QI L , GAO X P , et al. Synthesis of Li4Ti5O12 as anode material for lithium ion battery by ion exchange method[J]. Chinese Journal of Inorganic Chemistry, 2010, 26 (9): 1539- 1543.
16 HU G R , ZHANG X L , PENG Z D . Preparation and electrochemical performance of tantalum-doped lithium titanate as anode material for lithium-ion battery[J]. Transactions of Nonferrous Metals Society of China, 2011, 21 (10): 2248- 2253.
doi: 10.1016/S1003-6326(11)61003-0
17 张新龙, 胡国荣, 彭忠东. 锂离子电池负极材料钼掺杂钛酸锂的制备及电化学表征[J]. 无机材料学报, 2011, 26 (4): 443- 448.
17 ZHANG X L , HU G R , PENG Z D . Preparation and electrochemical characterization of molybdenum doped lithium titanate as anode material of lithium ion battery[J]. Chinese Journal of Inorganic Chemistry, 2011, 26 (4): 443- 448.
18 LIU L , WANG P F , LI J J , et al. Hydrothermal preparation and intrinsic transport properties of nanoscale Li4Ti5O12[J]. Solid State Ionics, 2018, 320, 353- 359.
doi: 10.1016/j.ssi.2018.03.025
19 KIM J , LEE K E , KIM K H , et al. Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability[J]. Carbon, 2017, 114, 275- 283.
doi: 10.1016/j.carbon.2016.12.022
20 KIM K T , YU C Y , YOON C S , et al. Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries[J]. Nano Energy, 2015, 12, 725- 734.
doi: 10.1016/j.nanoen.2015.01.034
21 LI R Y , CHEN T Y , SUN B B , et al. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance[J]. Materials Research Bulletin, 2015, 70, 965- 975.
doi: 10.1016/j.materresbull.2015.06.048
22 LIU J , SONG K P , AKEN P A V , et al. Self-supported Li4Ti5O12/C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries[J]. Nano Letters, 2014, 14, 2597- 2603.
doi: 10.1021/nl5004174
23 LUO H J , SHEN L F , RUI K , et al. Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries[J]. Journal of Alloys and Compounds, 2013, 572, 37- 42.
doi: 10.1016/j.jallcom.2013.03.247
24 XUE R , YAN J W , JIANG L , et al. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors[J]. Materials Chemistry and Physics, 2015, 160, 375- 382.
doi: 10.1016/j.matchemphys.2015.04.055
25 YANG X J , ZHENG A B , NIU B Y , et al. Graphene nanosheet and carbon layer co-decorated Li4Ti5O12 as high-performance anode material for rechargeable lithium-ion batteries[J]. Ceramics International, 2017, 43, 3252- 3258.
doi: 10.1016/j.ceramint.2016.11.154
26 谭毅, 薛冰. 锂离子电池负极材料钛酸锂的研究进展[J]. 无机材料学报, 2018, 33, 475- 482.
26 TAN Y , XUE B . Research progress of lithium titanate as anode material of lithium ion battery[J]. Chinese Journal of Inorganic Chemistry, 2018, 33, 475- 482.
[1] 程宽, 赵洪峰, 周远翔. 多元施主掺杂对直流ZnO压敏陶瓷结构与电气性能的影响[J]. 材料工程, 2022, 50(8): 153-159.
[2] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[3] 吕娜, 孙振, 胡雅琪, 李炳勤, 景圣皓, 张宗良, 蒋良兴, 贾明, 刘芳洋. 硫化物固态电解质Li6PS5Cl的球磨-固相烧结制备与性能[J]. 材料工程, 2022, 50(2): 103-110.
[4] 吴冰, 刘磊, 王献志, 肖潇, 杨豹, 赵锦涛, 古成前, 马雷. Y3+掺杂Li4Ti5O12负极材料的电荷输运特性及电化学性能研究[J]. 材料工程, 2022, 50(10): 102-110.
[5] 曹倩, 杨晶晶, 陈卫星, 王趁红, 吴新明, 雷亚萍. PEO基固态聚合物电解质膜的静电纺丝制备及性能[J]. 材料工程, 2022, 50(10): 148-156.
[6] 于长清, 余悠然, 赵英民, 谢宁. 石墨热压还原Cu/Cu2O金属陶瓷电导逾渗行为与微观结构分形表征[J]. 材料工程, 2022, 50(1): 154-160.
[7] 王敬枫, 康辉, 成中军, 谢志民, 王友善, 刘宇艳, 樊志敏. Ti3C2Tx MXene基电磁屏蔽材料的研究进展[J]. 材料工程, 2021, 49(6): 14-25.
[8] 孙鹏, 李忠芳, 王传刚, 王燕, 崔伟慧, 裴洪昌, 尹晓燕. 燃料电池用高温质子交换膜的研究进展[J]. 材料工程, 2021, 49(1): 23-34.
[9] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[10] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[11] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[12] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[13] 王伟国, 王新福, 汪聃, 郝刚领. 锶镁共掺对Na0.5Bi0.5TiO3氧离子导体电学性能的影响分析[J]. 材料工程, 2019, 47(8): 28-32.
[14] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[15] 云亮, 刘峥, 李海莹, 王浩, 钟寒阳. 原位合成壳聚糖复合炭材料及其在铅碳电池中的应用[J]. 材料工程, 2018, 46(8): 57-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn