Preparation and transport property of nano-Li4Ti5O12 anode materials
Tian-rou LIAN, Yu-xiao LU, Bing WU, Guang-yue SHI, Lei MA, Lei LIU, Jian-zhong LOU()
Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic Information Engineering, Hebei University, Baoding 071002, Hebei, China
Li4Ti5O12 (LTO) anode materials are successfully prepared by sol-gel method using butyl phthalate and lithium acetate as precursors.The phase and morphology of the material were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The effects of calcination conditions and coating modification on transport properties of LTO were also studied.The results show that the ionic conductivity and electronic conductivity of the sample prepared at 800 ℃ and 10 h are 8.8×10-8 S/cm and 8.53×10-10 S/cm, respectively. The ionic and electronic conductivities of LTO/C are 4.35×10-7 S/cm and 9.63×10-8 S/cm, respectively.The electrochemical performance tests show that the first discharge capacity of carbon-coated active materials can reach 172.4 mAh/g at the ratio of 0.1 C.After 50 cycles at 5 C, the capacity retention rate can reach 94.4%, indicating a good electrochemical performance of the samples.
ZHANG Y Y , WANG D , WANG Y Y , et al. Preparation of Zr doped lithium titanate by high energy ball milling assisted solidstate method[J]. Rare Metal Materials and Engineering, 2014, 43 (9): 2237- 2241.
DONG H Y , HE Y B , LI B H , et al. Controllable preparation and electrochemical properties of high crystallinity lamellar lithium titanate/graphene composites[J]. New Carbon Materials, 2016, 31 (2): 115- 120.
SUN B , JIANG S , WANG R W , et al. Synthesis and application of high performance lithium titanate/reduced graphene oxide composite anode materials[J]. Chemical Journal of Chinese Universities, 2018, 39 (12): 2767- 2773.
doi: 10.7503/cjcu20180250
4
SUN Y K , JUNG D J , LEE Y S , et al. Synthesis and electrochemical characterization of spinel Li[Li(1-x)/3CrxTi(5-2x)/3]O4 anode materials[J]. Journal of Power Sources, 2004, 125, 242- 245.
doi: 10.1016/j.jpowsour.2003.08.013
5
WANG J , LIU X M , YANG H . Synthesis and electrochemical properties of highly dispersed Li4Ti5O12 nanocrystalline for lithium secondary batteries transactions of nonferrous[J]. Transactions of Nonferrous Metals Society of China, 2012, 22 (3): 613- 620.
doi: 10.1016/S1003-6326(11)61222-3
6
FANG W , CHENG X Q , ZUO P J , et al. Hydrothermal-assisted sol-gel synthesis of Li4Ti5O12/C nano-composite for high-energy lithium-ion batteries[J]. Solid State Ionics, 2013, 244, 52- 56.
doi: 10.1016/j.ssi.2013.04.025
7
LEONIDOV I A , LEONIDOVA O N , PERELYAEVA L A , et al. Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12[J]. Physics of the Solid State, 2003, 45 (11): 2183- 2188.
doi: 10.1134/1.1626760
8
SHI Q , LIU L J , OUYANG C Y , et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations[J]. Physical Review B, 2003, 68, 195108.
doi: 10.1103/PhysRevB.68.195108
9
WANG C , LI H , FU A , et al. An RAPET approach to in situ synthesis of carbon modified Li4Ti5O12 anode nanocrystals with improved conductivity[J]. New Journal of Chemistry, 2014, 38, 616- 623.
doi: 10.1039/C3NJ01319G
10
WOLFENSTINE J , ALLEN J L . Electrical conductivity and charge compensation in Ta doped Li4Ti5O12[J]. Journal of Power Sources, 2008, 180, 582- 585.
doi: 10.1016/j.jpowsour.2008.02.019
11
HUANG S H , WEN Z Y , ZHU X J , et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12[J]. Electrochemistry Communications, 2004, 6, 1093- 1097.
doi: 10.1016/j.elecom.2004.08.013
12
HUANG S H , WEN Z Y , ZHU X J , et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries[J]. Journal of Power Sources, 2007, 165, 408- 412.
doi: 10.1016/j.jpowsour.2006.12.010
13
WOLFENSTINE J , LEE U , ALLEN J L . Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere[J]. Journal of Power Sources, 2006, 154, 287- 289.
doi: 10.1016/j.jpowsour.2005.12.044
14
YAN B , LI M , LI X , et al. Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode[J]. Journal of Materials Chemistry A, 2015, 3, 11773- 11781.
doi: 10.1039/C5TA00887E
ZHANG H , QI L , GAO X P , et al. Synthesis of Li4Ti5O12 as anode material for lithium ion battery by ion exchange method[J]. Chinese Journal of Inorganic Chemistry, 2010, 26 (9): 1539- 1543.
16
HU G R , ZHANG X L , PENG Z D . Preparation and electrochemical performance of tantalum-doped lithium titanate as anode material for lithium-ion battery[J]. Transactions of Nonferrous Metals Society of China, 2011, 21 (10): 2248- 2253.
doi: 10.1016/S1003-6326(11)61003-0
ZHANG X L , HU G R , PENG Z D . Preparation and electrochemical characterization of molybdenum doped lithium titanate as anode material of lithium ion battery[J]. Chinese Journal of Inorganic Chemistry, 2011, 26 (4): 443- 448.
18
LIU L , WANG P F , LI J J , et al. Hydrothermal preparation and intrinsic transport properties of nanoscale Li4Ti5O12[J]. Solid State Ionics, 2018, 320, 353- 359.
doi: 10.1016/j.ssi.2018.03.025
19
KIM J , LEE K E , KIM K H , et al. Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability[J]. Carbon, 2017, 114, 275- 283.
doi: 10.1016/j.carbon.2016.12.022
20
KIM K T , YU C Y , YOON C S , et al. Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries[J]. Nano Energy, 2015, 12, 725- 734.
doi: 10.1016/j.nanoen.2015.01.034
21
LI R Y , CHEN T Y , SUN B B , et al. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance[J]. Materials Research Bulletin, 2015, 70, 965- 975.
doi: 10.1016/j.materresbull.2015.06.048
22
LIU J , SONG K P , AKEN P A V , et al. Self-supported Li4Ti5O12/C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries[J]. Nano Letters, 2014, 14, 2597- 2603.
doi: 10.1021/nl5004174
23
LUO H J , SHEN L F , RUI K , et al. Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries[J]. Journal of Alloys and Compounds, 2013, 572, 37- 42.
doi: 10.1016/j.jallcom.2013.03.247
24
XUE R , YAN J W , JIANG L , et al. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors[J]. Materials Chemistry and Physics, 2015, 160, 375- 382.
doi: 10.1016/j.matchemphys.2015.04.055
25
YANG X J , ZHENG A B , NIU B Y , et al. Graphene nanosheet and carbon layer co-decorated Li4Ti5O12 as high-performance anode material for rechargeable lithium-ion batteries[J]. Ceramics International, 2017, 43, 3252- 3258.
doi: 10.1016/j.ceramint.2016.11.154
TAN Y , XUE B . Research progress of lithium titanate as anode material of lithium ion battery[J]. Chinese Journal of Inorganic Chemistry, 2018, 33, 475- 482.