Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (6): 43-49    DOI: 10.11868/j.issn.1001-4381.2019.000980
  电磁超材料专栏 本期目录 | 过刊浏览 | 高级检索 |
铁磁/铁电复合介质及其超材料结构微波性能
郭鸿霞, 张家萌, 王青敏, 毕科
北京邮电大学 理学院, 北京 100876
Ferromagnetic/ferroelectric composites and microwave properties of its metamaterial structure
GUO Hong-xia, ZHANG Jia-meng, WANG Qing-min, BI Ke
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
全文: PDF(5499 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用固相法工艺,以钇铁石榴石(Y3Fe5O12,YIG)和钛酸锶钡(Ba0.5Sr0.5TiO3,BST)为原料,制备出了一系列YIG/BST铁磁/铁电复合介质。利用XRD和SEM对复合介质的物相和微观形貌进行了观察,并对其介电性能、磁性能进行了详细研究。结果表明:在一定温度下烧结所得的复合介质,铁电相和铁磁相两相独立存在。(1-x) YIG-xBST (x=0.1,0.2,0.3,0.4,0.5)复合介质具有良好的介电性能:室温下,随着频率的升高(102~106Hz),各组分复合介质的介电常数和介电损耗逐步下降;频率为1 MHz时,随着BST含量的增加,复合介质的介电常数升高,介电损耗先急剧减小而后趋于稳定;随着温度的升高(0~400℃),不同频率下各组分复合介质的介电常数、介电损耗逐步增加。复合介质表现出典型软磁体的磁滞回线形状,随着BST含量的增加,饱和磁化强度(Ms)逐渐降低,磁导率减小。同时,对复合介质超材料结构的微波性能进行了研究,结果表明超材料结构可实现磁可调。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭鸿霞
张家萌
王青敏
毕科
关键词 铁磁/铁电复合介质钛酸锶钡钇铁石榴石介电性能磁性能微波性能    
Abstract:A series of YIG/BST ferromagnetic/ferroelectric composites were prepared by solid-state reaction using yttrium iron garnet (Y3Fe5O12) and barium titanate (Ba0.5Sr0.5TiO3). The phase and microstructure of the composites were investigated by XRD and SEM, and the dielectric and magnetic property were studied in detail. The results show that the ferroelectric phase and ferromagnetic phase exist independently when the composite is sintered at a certain temperature; (1-x)YIG-xBST (x=0.1, 0.2, 0.3, 0.4, 0.5) composites possess great dielectric properties: at room temperature, with increasing frequency (102-106Hz), the dielectric constant of each component composite and the dielectric loss decreases gradually; when the frequency is 1 MHz, the dielectric constant of the composite increases with the increase of BST content, and the dielectric loss first drops and then stabilizes; with the increase of temperature (0-400 ℃), the dielectric constant and dielectric loss of each composite at different frequencies gradually increase. The composites exhibit the hysteresis loop shape of a typical soft magnet. As the BST content increases, the saturation magnetization (Ms) gradually decreases, and the magnetic permeability decreases. The microwave property of the composite based metamaterial structure was studied. The results show that it can realize magnetic tunability.
Key wordsferromagnetic/ferroelectric composite media    barium titanate    strontium iron garnet    dielectric property    magnetic property    microwave property
收稿日期: 2019-10-29      出版日期: 2020-06-15
中图分类号:  O441.6  
通讯作者: 毕科(1983-),男,副教授,博士生导师,研究方向:电磁超材料与相关器件设计,联系地址:北京市海淀区西土城路十号北京邮电大学理学院(100876), bike@bupt.edu.cn     E-mail: bike@bupt.edu.cn
引用本文:   
郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
GUO Hong-xia, ZHANG Jia-meng, WANG Qing-min, BI Ke. Ferromagnetic/ferroelectric composites and microwave properties of its metamaterial structure. Journal of Materials Engineering, 2020, 48(6): 43-49.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000980      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/43
[1] 都有为. 铁氧体[M]. 南京:江苏科学技术出版社,1996: 172-204. DU Y W. Ferrite[M]. Nanjing: Jiangsu Science and Technology Press,1996: 172-204.
[2] HEINDL R. Ferrite-ferroelectric thin films with tunable electrical and magnetic properties[D]. Florida,USA:University of South Florida,2006.
[3] KALARIKAL S S,MENARD D,DAS J,et al. Static and high frequency magnetic and dielectric properties of ferrite-ferroelectric composite materials[J]. Journal of Applied Physics,2006,100(8): 84905-84913.
[4] HARRIS V G, GEILER A, CHEN Y, et al. Recent advances in processing and applications of microwave ferrites[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(14):2035-2047.
[5] 曾丽文,徐光亮,刘桂香,等. 室温固相反应法制备YIG纳米粉体[J]. 人工晶体学报,2010,39(6):1434-1450. ZENG L W,XU G L,LIU G X,et al. Preparation of YIG nanopowders by solid state reaction at room temperature[J]. Journal of Synthetic Crystals,2010,39(6): 1434-1450.
[6] 高海涛,王建江,李泽.基于超材料设计的钡铁氧化吸波途层研究[J].材料工程,2019,47(1):70-76. GAO H T, WANG J J, LI Z, et al. Barium ferrite microwave absorbing coating based on metamaterial design[J]. Journal of Materials Engineering, 2019,47(1):70-76.
[7] 云斯宁,王晓莉,孙晓亮. Ba1-xSrxTi0.88Sn0.12O3陶瓷结构与介电性能的研究[J]. 材料工程, 2006(9):49-52. YUN S N, WANG X L, SUN X L. Microstructure and dielectric properties of Ba1-xSrxTi0.88Sn0.12O3 ferroelectric ceramics[J]. Journal of Materials Engineering, 2006(9):49-52.
[8] KIM J Y,KOH J H,SONG J S,et al. Magnetically and electrically tunable devices using ferromagnetic/ferroelectric ceramics[J]. Physica Status Solidi(B):Applied Research,2004,241(7): 1714-1717.
[9] SRINIVAS A,GOPALAN R,CHANDRASEKHARAN V. Room temperature multiferroism and magnetoelectric coupling in BaTiO3/BaFe12O19 system[J]. Solid State Communications,2009,149(9): 367-370.
[10] LI X,YAN B,DONG G,et al. Study on phase structure,dielectric and magnetic properties of BST/YIG composites[J]. Journal of Inorganic Materials,2009,24(2): 383-386.
[11] JACOBO S E, FANO W G, RAZZITTE A C, et al. Dielectric properties of barium hexaferrite in the microwave range[C]//1998 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Atlanta, USA:IEEE,1998,1:273-276.
[12] 池恒. 铁电-铁磁复合陶瓷的介电性能研究[D]. 武汉:华中科技大学,2012. CHI H. Study on dielectric properties of ferroelectric-ferromagnetic composite ceramics[D]. Wuhan: Huazhong University of Science and Technology,2012.
[13] SRIDESHMUKH L,KUMAR K K,LAXMAN S B,et al. Dielectric properties and electrical conduction in yttrium iron garnet (YIG) [J]. Bulletin of Materials Science,1998,21(3): 219-226.
[14] OZGUR U,ALIVOV Y,MORKOC H. Microwave ferrites,part 1: fundamental properties[J]. Journal of Materials Science: Materials in Electronics,2009,20(9): 789-834.
[15] DMRIL M C,KASHYAP S C,DUBE D C. Electrical and manetic properties of barium hexaferrite nanoparticles prepared by citrate precursor method[J]. Ceramics International,2004,30(7): 1623-1626.
[16] 杨海波,陈含雨,李昭,等. Ba0.8Sr0.2TiO3基三相磁电复合材料的介电和磁性能研究[J]. 陕西科技大学学报,2015,33(4):28-31. YANG H B,CHEN H Y,LI Z,et al. Dielectric and magnetic properties of Ba0.8Sr0.2TiO3 based three-phase magnetoelectric composites[J]. Journal of Shaanxi University of Science and Technology,2015,33(4):28-31.
[17] YANG H, WANG H, HE L, et al. Polarization relaxation mechanism of Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with giant dielectric constant and high permeability[J]. Journal of Applied Physics, 2010,108(7):074105.
[18] YANG Y Y,YANG H B,LU L, et al. Low-temperature sintering and properties of Bi4Ti3O12/Ni0.37Cu0.20Zn0.43Fe1.92O3.88 composites[J]. Journal of Alloys and Compounds,2013,555(5): 402-404.
[19] NAKAMURA T. Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra[J]. Journal of Magnetism and Magnetic Materials, 1997,168(3):285-291.
[20] ZHAO Q,ZHOU J,ZHANG F L,et al. Mie resonance-based dielectric metamaterials[J]. Materials Today,2009,12:60-69.
[21] 毕科,周济,赵宏杰,等. 基于铁磁共振的超材料研究进展[J]. 科学通报,2013, 58(19):1785-1795. BI K,ZHOU J,ZHAO H J, et al. Research progress of ferromagnetic resonance based metamaterials[J]. Chinese Science Bulletin,2013, 58(19):1785-1795.
[22] 毕科,王旭莹,兰楚文,等. 可调介质超材料研究进展[J]. 中国材料进展,2019,38(1):1-13. BI K,WANG X Y,LAN C W, et al. Research progress on adjustable medium metamaterials[J]. Materials China,2019,38(1):1-13.
[1] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[2] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[3] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[4] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[5] 陈宇飞, 耿成宝, 郭红缘, 岳春艳, 柴铭茁. KH-SiO2/PES/BMI-F51复合材料的介电性能[J]. 材料工程, 2019, 47(8): 103-109.
[6] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[7] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[8] 梁家浩, 魏智强, 朱学良, 张旭东, 武晓娟, 姜金龙. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10): 113-119.
[9] 邢星河, 曹峰, 彭志航, 曾祥雄. Co掺杂对CaBi2Nb2O9陶瓷结构和电学性能的影响[J]. 材料工程, 2018, 46(8): 36-42.
[10] 亢静锐, 董桂霞, 吕易楠, 李雷, 韩伟丹, 张茜. Eu2O3掺杂量及烧结温度对氧化铝基微波陶瓷性能的影响[J]. 材料工程, 2018, 46(8): 78-83.
[11] 赵晖, 马瑞廷, 赵海涛. 合成条件对纳米锌铁氧体形貌与性能的影响[J]. 材料工程, 2018, 46(4): 38-42.
[12] 王晨, 王魁, 肖小波, 丁浩, 汪炳叔, 毛朝武, 张维林, 金钢南. 钨酸钠对取向硅钢绝缘涂层性能的影响[J]. 材料工程, 2018, 46(4): 51-57.
[13] 赵海涛, 马瑞廷, 刘瑞萍. 热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒[J]. 材料工程, 2017, 45(9): 81-85.
[14] 李悦, 朱立群, 李卫平, 刘慧丛, 南海洋. 钕铁硼器件表面电沉积铜层及性能[J]. 材料工程, 2017, 45(6): 55-60.
[15] 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45(6): 87-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn