Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (6): 34-42    DOI: 10.11868/j.issn.1001-4381.2019.001020
  电磁超材料专栏 本期目录 | 过刊浏览 | 高级检索 |
双曲超材料及其传感器研究进展
吴红亚1, 杨云1, 张光磊1, 白洋2, 周济3
1. 石家庄铁道大学 材料科学与工程学院, 石家庄 050043;
2. 北京科技大学 新材料技术研究院, 北京 100083;
3. 清华大学 材料科学与工程学院, 北京 100084
Research progress in hyperbolic metamaterials and sensors
WU Hong-ya1, YANG Yun1, ZHANG Guang-lei1, BAI Yang2, ZHOU Ji3
1. School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
2. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;
3. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1837 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 超材料为具有超常电磁性质的人工结构,因拥有自然界材料没有的介电常数、磁导率和折射率等电磁性质而引起人们的关注。双曲超材料是具有强各向异性介电张量或磁导率张量的介质,其介电常数张量或磁导率张量的分量在一个或两个空间方向上为负,与其他类型的超材料相比,双曲超材料具有在光学频率下相对容易制造、宽带非共振和三维体响应以及灵活的波长可调谐性等优点。本文综述了双曲超材料的特性、实现方法、可调谐及活性以及其作为超灵敏传感器的发展,重点讨论了基于金属/介质多层结构及金属纳米线阵列的双曲超材料作为生物传感器的原理及研究进展,并指出双曲超材料传感器发展的长期目标是结构简单、便于制备、宽频带和多元分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴红亚
杨云
张光磊
白洋
周济
关键词 双曲超材料传感器各向异性人工结构    
Abstract:Metamaterials are artificial structures with extraordinary electromagnetic properties. Much attention has been attracted to metamaterials because of their electromagnetic properties like permittivity, permeability, and refractive index that traditional materials cannot achieve. Hyperbolic metamaterials show highly anisotropic dielectric tensors or permeability tensor, the components of which are negative in one or two spatial directions. Compared with other types of metamaterials, hyperbolic metamaterials are relatively easy to be fabricated at optical frequencies, broadband non-resonant and three-dimensional volume responses, and flexible wavelength tunability. In this review, definition, implementations of hyperbolic metamaterials, tunable and active hyperbolic metamaterials and developments of sensitive sensors are introduced in detail. The principle and progress of the hyperbolic metamaterials based on metal/dielectric multilayer structure and metal nanowire array as biosensors were focused and discussed in this paper, and it was pointed out that the long-term goal of the development of hyperbolic metamaterials sensors is simple structure, easy preparation, wide band and multivariate analysis.
Key wordshyperbolic metamaterial    sensor    anisotropism    artificial structure
收稿日期: 2019-11-08      出版日期: 2020-06-15
中图分类号:  O441.4  
通讯作者: 白洋(1979-),男,研究员,博士,研究方向:电磁及多物理场超材料与新型微波/光学器件设计,联系地址:北京市海淀区学院路30号北京科技大学新材料技术研究院(100083), baiy@mater.ustb.edu.cn     E-mail: baiy@mater.ustb.edu.cn
引用本文:   
吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
WU Hong-ya, YANG Yun, ZHANG Guang-lei, BAI Yang, ZHOU Ji. Research progress in hyperbolic metamaterials and sensors. Journal of Materials Engineering, 2020, 48(6): 34-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001020      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/34
[1] SHELBY R A,SMITH D R,SCHULTZ S.Experimental verification of a negative index of refraction[J].Science,2001,292(5514):77-79.
[2] VESELAGO V G.The electrodynamics of substances with simultaneously negative values of ε and μ[J].Soviet Physics Uspekhi,1968,10(4):509-514.
[3] PENDRY J B,HOLDEN A J,STEWART W J,et al.Extremely low frequency plasmons in metallic mesostructures[J].Phys Rev Lett,1996,76(25):4773-4776.
[4] PENDRY J B,HOLDEN A J,ROBBINS D J,et al.Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2075-2084.
[5] HOFFMAN A J,ALEKSEYEV L,HOWARD S S,et al.Negative refraction in semiconductor metamaterials[J].Nature Materials,2007,6(12):946-950.
[6] SUN J B,SHALAEV M I,LITCHINITSER N M.Experimental demonstration of non-resonant hyperlens in the visible range[J].Nature Communications,2015,6:7201.
[7] CHEN X,ZHANG C,YANG F,et al.Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial[J].ACS Nano,2017,11(10):9863-9868.
[8] LEE Y,KIM S J,PARK H,et al.Metamaterials and metasurfaces for sensor applications[J].Sensors,2017,17:1726.
[9] FERRARI L,WU C,LEOAGE D,et al.Hyperbolic metamaterials and their applications[J].Progress in Quantum Electronics,2015,40:1-40.
[10] HUO P C,ZHANG S,LIANG Y Z,et al.Hyperbolic metamaterials and metasurfaces:fundamentals and applications[J].Advanced Optical Materials,2019,7(14):1801616.
[11] SMITH D R,SCHURING D.Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J].Physical Review Letters,2003,90(7):077405.
[12] SHEKHAR P,ATKIINSON J,JACOB Z.Hyperbolic metamaterials:fundamentals and applications[J].Nano Convergence,2014,1(1):14.
[13] PODDUBNY A,IORSH I,BELOV P,et al.Hyperbolic metamaterials[J].Nature Photonics,2013,7(12):948-957.
[14] ALEKSEYEV L V,PODOLSKIY V A,NARIMANOV E E.Homogeneous hyperbolic systems for terahertz and far-infrared frequencies[J].Advances in OptoElectron,2012,2012:1-6.
[15] SUN J B,ZHOU J,LI B,et al.Indefinite permittivity and negative refraction in natural material:graphite[J].Applied Physics Letters,2011,98(10):101901-101903.
[16] SUN J B,LITCHINITSER N M,ZHOU J.Indefinite by nature:from ultraviolet to terahertz[J].ACS Photonics,2014,1(4):293-303.
[17] WANG R,SUN J B,ZHOU J.Indefinite permittivity in uniaxial single crystal at infrared frequency[J].Applied Physics Letters,2010,97:031912.
[18] WU H Y,SUN J B,ZHOU J,et al.Indefinite permittivity in KTP single crystal at infrared frequency[J].Journal of the Optical Society of America B,2013,30(2):324-327.
[19] AGRANOVICH V M,KRAVTSOV V E.Notes on crystal optics of superlattices[J].Solid State Communications,1985,55(1):85-90.
[20] LIU Z W,LEE H,XIONG Y,et al.Far-field optical hyperlens magnifying sub-diffraction-limited objects[J].Science,2007,315(5819):1686.
[21] KRISHNAMOORTHY H N S,JACOB Z,NARIMANOV E,et al.Topological transitions in metamaterials[J].Science,2012,336(6078):205-209.
[22] YANG X,YAO J,RHO J,et al.Experimental realization of three-dimensional indefinite cavities at the nanoscale with ano-malous scaling laws[J].Nature Photonics,2012,6(7):450-454.
[23] LU D,QIAN H,WANG K,et al.Nanostructuring multilayer hyperbolic metamaterials for ultrafast and bright green InGaN quantum wells[J].Advanced Materials,2018,30(15):1706411.
[24] WEST P R,ISHII S,NAIK G V,et al.Searching for better plasmonic materials[J].Laser Photonics Review,2010,4(6):795-808.
[25] LIU Y M,BARTALl G,ZHANG X.All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region[J].Optics Express,2008,16(20):15439-15448.
[26] NOGINOV M A,BARANKOV Y A,ZHU G,et al.Bulk photo-nic metamaterial with hyperbolic dispersion[J].Applied Physics Letters,2009,94(15):14-16.
[27] YAO J,LIU Z W,LIU Y M,et al.Optical negative refraction in bulk metamaterials of nanowires[J].Science,2008,321(5891):930-939.
[28] MCPEAK K M,JAYANTI S V,KRESS S J P,et al.Plasmonic films can easily be better:rules and recipes[J].ACS Photonics,2015,2(3):326-333.
[29] NAIK G,LIU J,KILDISHEV A,et al.Demonstration of Al∶ZnO as a plasmonic component for near-infrared metamaterials[J].Proceedings of the National Academy of Sciences,2012,109(23):8834-8838.
[30] RILEY C T,KIEU T A,SMALLEY J S T,et al.Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition[J].Physica Status Solidi(RRL)-Rapid Research Letters,2014,8(11):948-952.
[31] RILEY C T,SMALLEY J S T,POST K W,et al.High-quality,ultraconformal aluminum-doped zinc oxide nanoplasmonic and hyperbolic metamaterials[J].Small,2016,12(7):892-901.
[32] GUO P J,CHANG R P H,SCHALLER R D.Tunable infrared hyperbolic metamaterials with periodic indium-tin-oxide nanorods[J].Applied Physics Letters,2017,111(2):021108.
[33] OU J Y,PLUM E,ZHANG J F,et al.An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared[J].Nature Nanotechnology,2013,8:252-255.
[34] KALAVROUZIOTIS D,PAPAIOANNOU S,GIANNOULIS G,et al.0.48Tb/s (12×40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics[J].Optics Express,2012,20(7):7655-7662.
[35] KRISHNAMOORTHY H N S,ZHOU Y,RAMANATHAN S,et al.Tunable hyperbolic metamaterials utilizing phase change heterostructures[J].Applied Physics Letters,2014,104(12):121101-121101-5.
[36] JOSEPH S T,SMALLEY,FELIPE V,et al.Dynamically tunable and active hyperbolic metamaterials[J].Advances in Optics and Photonics,2018,10(2):354-408.
[37] PRAYAKARAO S,MENDOZA B,DEVINE A,et al.Tunable VO2/Au hyperbolic metamaterial[J].Applied Physics Letters,2016,109(6):061105.
[38] KRISHNAMOORTHY H N S,GHOLIPOUR B,ZHELUDEV N I,et al.A non-volatile chalcogenide switchable hyperbolic metamaterial[J].Advanced Optical Materials,2018,6(19):1800332.
[39] ROBERTS J A,YU S J,HO P H,et al.Tunable hyperbolic metamaterials based on self-assembled carbon nanotubes[J].Nano Letters,2019,19(5):3131-3137.
[40] IORSH I V,MUKHIN I S,SHADRIVOV I V,et al.Hyperbolic metamaterials based on multilayer graphene structures[J].Physical Review B,2012,87(7):478-486.
[41] WU J S,BASOV D N,FOGLER M M.Topological insulators are tunable waveguides for hyperbolic polaritons[J].Physical Review B,2015,92(20):05430.
[42] DAI S,MA Q,LIU M K,et al.Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial[J].Nature Nanotechnology,2015,10(8):682-686.
[43] CALDWELL J D,KRETININ A V,CHEN Y,et al.Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride[J].Nature Communications,2014,5:5221.
[44] NASIR M E,DICKSON W,WURTZ G A,et al.Hydrogen detected by the naked eye:optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials[J].Advanced Materials,2014,26(21):3532-3537.
[45] VASILANTONAKIS N,WURTZ G A,PODOLSKIY V A,et al.Refractive index sensing with hyperbolic metamaterials:strategies for biosensing and nonlinearity enhancement[J].Optics Express,2015,23(10):14329-14343.
[46] KABASHIN A V,EVANS P,PASTKOVSKY S,et al.Plasmonic nanorod metamaterials for biosensing[J].Nature Materials,2009,8(11):867-871.
[47] LIEDBERG B,NYKANDER C,LUNDSTRUM I.Surface-plasmon resonance for gas-detection and biosensing[J].Sensors and Actuators B,1983,4:299-304.
[48] LIU B W,CHEN S,ZHANG J C,et al.A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm[J].Advanced Materials,2018,30(12):1706031.
[49] LI S Y,AI X C,WU R H,et al.Experimental demonstration of a metal-dielectric metamaterial refractive index sensor[J].Optics and Laser Technology,2018,100:304-308.
[50] KABASHIN A V,NIKITIN P I.Surface plasmon resonance interferometer for bio- and chemical-sensors[J].Optics Communications,1998,150(1/6):5-8.
[51] MARKOWICZ P P,LAW W C,BAEV A,et al.Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing[J].Optics Express,2007,15(4):1745-1754.
[52] ANKER J N,HALL W P,LYANDRES O,et al.Biosensing with plasmonic nanosensors[J].Nature Materials,2008,7(6):442-453.
[53] JACKSON J B,HALAS N J.Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates[J].Proceedings of the National Academy of Sciences,2004,101(52):17930-17935.
[54] NIE S,EMORY S R.Probing single molecules and single nano-particles by surface-enhanced Raman scattering[J].Science,1997,275(5303):1102-1106.
[55] LI K,LI X,STOCKMAN M D.Surface plasmon amplification by stimulated emission in nanolenses[J].Physical Review B,2005,71(11):115409.
[56] HAES A J,DUYNE V R P.A unified view of propagating and localized surface plasmon resonance biosensors[J].Analytical and Bioanalytical Chemistry,2004,379(7/8):920-930.
[57] KRAVETA V G,SCHEDIN F,JALIL R,et al.Singular phase nano-optics in plasmonic metamaterials for label-free singlemolecule detection[J].Nature Materials,2013,12(4):304-309.
[58] LIU N,WEISS T,MESCH M,et al.Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J].Nano Letters,2010,10(4):1103-1107.
[59] SHEN Y,ZHOU J,LIU T,et al.Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit[J].Nature Communications,2013,4:2381.
[60] ZENG S,SREEKANTH K V,SHANG J,et al.Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing[J].Advanced Materials,2015,27(40):6163-6169.
[61] SREEKANTH K V,ALAPAN Y,ELKABBASH M,et al.Extreme sensitivity biosensing platform based on hyperbolic metamaterials[J].Nature Materials,2016,15(6):621-627.
[62] SREEKANTH K V,ALAPAN Y,ELKABBASH M,et al.Enhancing the angular sensitivity of plasmonic sensors using hyperbolic metamaterials[J].Advanced Optical Materials,2016,4(11):1767-1772.
[63] SREEKANTH K V,ELKABBASH M,ALAPAN Y,et al.Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity[J].EPJ Applied Metamaterials,2017,4:1.
[64] CALIGIURI V,LENTO R,RICCIARDI L,et al.Environmental control of the topological transition in metal/photoemissive-blend metamaterials[J].Advanced Optical Materials,2018,6(9):1701380.
[65] SREEKANTH K V,MAHALAKSHMI P,HAN S,et al.Brewster mode-enhanced sensing with hyperbolic metamaterial[J].Advanced Optical Materials,2019,7(21):1900680.
[1] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[2] 王校辉, 陈功, 董志强, 朱志刚, 陈诚. 分子印迹光子晶体的研究进展[J]. 材料工程, 2020, 48(4): 60-72.
[3] 赵泽军, 卢学鹏, 刘帅, 息剑峰, 李宝河. MgO/Pd底层对CoSiB/Pd多层膜垂直磁各向异性及热稳定性的影响[J]. 材料工程, 2020, 48(2): 65-70.
[4] 金嘉炜, 李国臣, 张冶, 李公义, 楚增勇. TiO2薄膜型气敏传感器研究进展[J]. 材料工程, 2020, 48(10): 28-38.
[5] 丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
[6] 余煜玺, 韩滨. PDC-SiBCN陶瓷基无线无源温度传感器的性能[J]. 材料工程, 2020, 48(1): 121-127.
[7] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[8] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[9] 沈小群, 陈李, 李顺波, 徐溢. VOCs传感器敏感膜材料及敏感机理研究进展[J]. 材料工程, 2019, 47(11): 64-70.
[10] 童邵辉, 李东, 邓增辉, 方虎. 电子束快速成形TC4合金的组织与断裂性能[J]. 材料工程, 2019, 47(1): 125-130.
[11] 阚侃, 王珏, 付东, Sementsov YURII, 宋美慧, 林雨斐, 史克英. Co3O4中空纳米球的可控制备及气敏性能[J]. 材料工程, 2019, 47(1): 50-57.
[12] 丁智平, 黄达勇, 荣继刚, 黄友剑, 曾家兴. 长玻纤增强复合材料注塑成型构件强度分析[J]. 材料工程, 2018, 46(4): 111-119.
[13] 金欣, 畅旭东, 王闻宇, 朱正涛, 林童. 基于聚二甲基硅氧烷柔性可穿戴传感器研究进展[J]. 材料工程, 2018, 46(11): 13-24.
[14] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[15] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn