Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 157-162    DOI: 10.11868/j.issn.1001-4381.2019.001040
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
ZrO2/Al2O3多孔陶瓷的制备与力学性能
蒋浩然, 林硕, 张康飞, 王海燕, 王佳齐, 何秀兰
哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040
Preparation and mechanical properties of ZrO2/Al2O3 porous ceramics
JIANG Hao-ran, LIN Shuo, ZHANG Kang-fei, WANG Hai-yan, WANG Jia-qi, HE Xiu-lan
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
全文: PDF(9535 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 采用凝胶-发泡法制备了ZrO2/Al2O3多孔陶瓷,研究了陶瓷浆料的流变性,固相含量对多孔陶瓷坯体显微结构与力学性能的影响,以及烧结助剂MgO含量与多孔陶瓷抗压强度及气孔率之间的关系。结果表明,在分散剂含量为0.4%(质量分数),球磨4 h,pH值为4的条件下,陶瓷浆料的黏度较低,有利于凝胶注模。固相含量增加,坯体气孔率下降。过高的固相含量使浆料流动困难,注模时引入空气导致坯体内形成较大的气孔甚至裂纹,使坯体抗压强度下降。由ZrO2引起的相变增韧及微裂纹增韧可有效改善多孔陶瓷的力学性能。随烧结助剂含量增加,多孔陶瓷气孔支撑体致密化程度增大,气孔率降低,抗压强度明显升高。多孔陶瓷的抗压强度最高达30 MPa。引入适量的ZrO2及烧结助剂,可制备气孔率适中、抗压强度高的多孔陶瓷。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋浩然
林硕
张康飞
王海燕
王佳齐
何秀兰
关键词 ZrO2/Al2O3多孔陶瓷凝胶-发泡法烧结助剂气孔率力学性能    
Abstract:ZrO2/Al2O3porous ceramics were prepared by gel-foaming technique. The rheological property of slurry, the effect of solid content on the microstructure and mechanical property of the porous green bodies and the relationship between the MgO sintering additive content with the compressive strength and porosity of porous ceramics were investigated. The results show when the dispersant content is 0.4%(mass fraction), ball milling time is 4 h and the pH value is 4, the low viscosity is conductive to gelcasting. The porosity of green body reduces with the increase of solid content. The excessive solid content makes the slurry hard to flow, and the big pores and cracks form during gelcasting process, then the compressive strength of green body decreases. The mechanical properties of porous ceramics are improved with the phase transformation and micro-crack toughening induced by the ZrO2. The densification of pore supports increases, the porosity reduces and compressive strength increases with the increase of sintering additive content. The highest compressive strength is 30 MPa. The porous ceramics with appropriate porosity and high compressive strength can be prepared by introducing suitable contents of ZrO2 and sintering additive.
Key wordsZrO2/Al2O3porous ceramic    gel-foaming    sintering additive    porosity    mechanical property
收稿日期: 2019-11-13      出版日期: 2021-05-21
中图分类号:  TQ174.1  
基金资助:黑龙江省大学生创新训练计划项目(201910214124)
通讯作者: 何秀兰(1973-),女,副教授,博士,研究方向:陶瓷材料,联系地址:黑龙江省哈尔滨市香坊区林园路4号哈尔滨理工大学(南区)材料学院317(150040),hexiulan@hrbust.edu.cn     E-mail: hexiulan@hrbust.edu.cn
引用本文:   
蒋浩然, 林硕, 张康飞, 王海燕, 王佳齐, 何秀兰. ZrO2/Al2O3多孔陶瓷的制备与力学性能[J]. 材料工程, 2021, 49(5): 157-162.
JIANG Hao-ran, LIN Shuo, ZHANG Kang-fei, WANG Hai-yan, WANG Jia-qi, HE Xiu-lan. Preparation and mechanical properties of ZrO2/Al2O3 porous ceramics. Journal of Materials Engineering, 2021, 49(5): 157-162.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001040      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/157
[1] 谢雨洲, 彭超群, 王小锋, 等. HEMA-TBA凝胶体系制备多孔氧化铝陶瓷[J]. 无机材料学报, 2017, 32(7):731-738. XIE Y Z, PENG C Q, WANG X F, et al. Porous alumina ceramic prepared by HEMA-TBA gelcasting system[J]. Journal of Inorganic Materials, 2017, 32(7):731-738.
[2] FEY T, ZIERATH B, GREIL P, et al. Microstructural, mechanical and thermal characterization of alumina gelcast foams manufactrued with the use of agarose as gelling agent[J]. Journal of Porous Materials, 2015, 22:1305-1312.
[3] HOU X H, LIU Z L, LIU Z Q, et al. Porous fibrous ZrO2-mullite ceramics prepared via tert-butyl alcohol-based gel-casting[J]. Ceramics International, 2018, 44(12):13580-13587.
[4] CHEN R Y, JIA W H, HEI D Q, et al. Toward excellent performance of Al2O3-ZrO2 reticulated porous ceramics:new insights based on residual stress[J]. Ceramics International, 2018, 44(17):21478-21485.
[5] HAMMEL E C, IGHODARO O L R, OKOLI O I.Processing and properties of advanced porous ceramics:an application based review[J]. Ceramics International, 2014, 40(10):15351-15370.
[6] LIU R P, XU T T, WAN C A.A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method[J]. Ceramics International, 2016, 42(2):2907-2925.
[7] GUO X S, ZHOU Z F, MA G L, et al. Effect of forming process on the integrity of pore-gradient Al2O3 ceramic foams by gelcasting[J]. Ceramics International, 2012, 38:713-719.
[8] 焦春荣, 陈大明, 仝建峰, 等. Al2O3多孔陶瓷材料发泡注凝技术研究[J]. 陶瓷学报, 2016, 37(3):253-258. JIAO C R, CHEN D M, TONG J F, et al. Foaming and gel-casting of porous alumina ceramics[J]. Journal of Ceramics, 2016, 37(3):253-258.
[9] SALOMÃO R, CARDOSO P H, BRANDI J. Gelcasting porous alumina beads of tailored shape and porosity[J]. Ceramics International, 2014, 40:16595-16601.
[10] KHOEE A A N, HABIBOLAHZADEH A, OADS F, et al. Fabrication of tungsten carbide foam through gel-casting process using nontoxic sodium alginate[J]. J Refractory Metals and Hard Materials, 2014, 43(3):115-120.
[11] 何秀兰, 吴成, 张文正, 等. 海藻酸钠凝胶-发泡法制备Al2O3多孔陶瓷[J].硅酸盐学报, 2020, 48(3):1-7. HE X L, WU C, ZHANG W Z, et al. Fabrication of Al2O3 porous ceramic by gel-foaming method with solidum alginate[J]. Journal of the Chinese Ceramics Society, 2020, 48(3):1-7.
[12] ZENG J Z, YANG J, WAN W, et al. Effect of Al2O3 particle size on preparation and properties of ZTA ceramics formed by gelcasting[J]. Ceramics International, 2014, 5:5333-5338.
[13] 吴海波, 袁波, 韩建燊, 等. 凝胶注模常温发泡制备氧化铝多孔陶瓷[J]. 材料科学与工艺, 2012, 20(4):4-8. WU H B, YUAN B, HAN J S, et al. Fabrication of porous alumina ceramics by gelcasting together with foaming at room temperature[J]. Materials Science and Technology, 2012, 20(4):4-8.
[14] JIA Y, KANNL Y, XIE Z P. Fabrication of alumina green body through gelcasting process using alginate[J]. Materials Letters, 2003, 57:2530-2534.
[15] LIU G, ZHANG D, MEGGS C, et al. Porous Al2O3-ZrO2 composites fabricated by an ice template method[J]. Scripta Materialia, 2010, 62:466-468.
[16] MOROZOVA L V, KALININA M V, KHAMOVA T V. Porous ceramics based on the ZrO2(Y2O3)-Al2O3 system for filtration membranes[J]. Glass Physics and Chemistry, 2016, 42(4):408-413.
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[3] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[4] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[5] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[6] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[7] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[8] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[9] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[10] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[11] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[12] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[13] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
[14] 邢宇轩, 郭英奎, 陈磊, 赵壮志, 王玉金. 气压浸渗法制备ZrC-W-Cu复合材料的显微组织与力学性能[J]. 材料工程, 2021, 49(7): 124-132.
[15] 詹强坤, 刘允中, 刘小辉, 周志光. 激光选区熔化成形含锆7×××系铝合金的显微组织与力学性能[J]. 材料工程, 2021, 49(6): 85-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn