Coprecipitation synthesis and properties of color tunable and upconversion luminescence in Tb3+ and Yb3+ co-doped Y(PO3)3 materials
LI Hui-ling1,2, LI Lan-ping1,2, RAO Qi-liang1,2, ZHANG Ling1,2, CHEN Xue-yu1,2, GU Man-qi1,2, YANG Jin-yu1,2
1. School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China; 2. Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
Abstract:Tb3+ and Yb3+ co-doped Y(PO3)3 upconversion luminescence phosphors were prepared by coprecipitation method. The structure and optical properties of the as-synthesized Y(PO3)3: Tb3+,Yb3+ samples were investigated by XRD, SEM, FI-IR and upconversion luminescence spectrophotometer (UPL), respectively. XRD results show that the as-synthesized samples are Tb3+ and Yb3+ co-doped Y(PO3)3 crystals with monoclinic structure (space group P21/c). UPL results display that the obtained Tb3+ and Yb3+ co-doped Y(PO3)3 samples emit the Tb3+ characteristic upconversion blue-green luminescence under 980 nm excitation. The doping content of Tb3+ ions affects the upconversion luminescence properties of the as-prepared Y(PO3)3: x Tb3+, 20%(mole fraction,the same below) Yb3+ samples. When the doping amount of Tb3+ is 2%-10%, the 5D4→7F6 emission peak of the Y(PO3)3: x Tb3+, 20% Yb3+ samples splits into two emission peaks centered at 481 nm and 491 nm. The dominant upconversion peak is located at 547 nm for the Y(PO3)3: x Tb3+, 20% Yb3+ samples when the Tb3+ doping content is 10%-20%. The concentration quenching can be observed when the doping amount of Tb3+ is over 20%. The doping ratio of Tb3+ to Yb3+ and the excitation power density also exhibit effect on the upconversion luminescence properties of the prepared samples. The upconversion blue-green emission color of the as prepared Tb3+ and Yb3+ co-doped Y(PO3)3 samples can be tuned by changing the doping amount ratio of Tb3+ to Yb3+.The upconversion luminescence mechanism of Y(PO3)3: Tb3+, Yb3+ samples was also discussed. The 5D3→7FJ (J=6,5,4) and 5D4→7FJ (J=6,5,4,3) upconversion luminescence are attributed to a three- and two-photon absorption mechanisms, respectively.
李慧玲, 李蓝苹, 饶啟亮, 张玲, 陈雪羽, 顾曼琦, 杨锦瑜. 颜色可调Y(PO3)3:Tb3+,Yb3+上转换发光材料的共沉淀制备及性能[J]. 材料工程, 2021, 49(5): 106-113.
LI Hui-ling, LI Lan-ping, RAO Qi-liang, ZHANG Ling, CHEN Xue-yu, GU Man-qi, YANG Jin-yu. Coprecipitation synthesis and properties of color tunable and upconversion luminescence in Tb3+ and Yb3+ co-doped Y(PO3)3 materials. Journal of Materials Engineering, 2021, 49(5): 106-113.
[1] RAFIQUE R, BAEK S H, PHAN L M T, et al. A facile hydro-thermal synthesis of highly luminescent NaYF4:Yb3+/Er3+ up-conversion nanoparticles and their biomonitoring capability[J]. Materials Science and Engineering:C, 2019, 99:1067-1074. [2] 吴亚丹, 胡圳, 赵丽, 等. 上转换发光材料La(OH)3:Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 材料导报, 2018, 32(2):708-714. WU Y D, HU Z, ZHAO L, et al. The preparation of an upconversion luminescent material La(OH)3:Er3+/Yb3+ and its application in dye-sensitized solar cells[J]. Material Reports, 2018, 32(2):708-714. [3] 简荣华, 庞涛. Yb3+/Er3+共掺Gd2Mo3O12的强绿色上转换发光及温度传感特性[J]. 中国稀土学报, 2018, 36(5):533-540. JIAN R H, PANG T. Strong green upconversion luminescence and temperature sensing properties of Yb3+/Er3+ co-doped Gd2Mo3O12 phosphors[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(5):533-540. [4] NANNURI S H, SAMAL A R, SUBASG C K, et al. Tuning of structural, laser power-dependent and temperature dependent luminescence properties of NaYF4:Yb, Er (Y:88%, Yb:10% and Er:2%) submicron crystals using Cr3+ ion doping[J]. Journal of Alloys and Compounds, 2019, 777:894-901. [5] CHOUDHARY A K, DWIVEDI A, BAHADUR A, et al. Enhanced upconversion emission and temperature sensor sensitivity in presence of Bi3+ ions in Er3+/Yb3+ co-doped MgAl2O4 phosphor[J]. Ceramics International, 2018, 44(8):9633-9642. [6] XIA H, LEI L, XIA J N, et al. Yb/Er/Tm tri-doped Na3ZrF7 upconversion nanocrystals for high performance temperature sensing[J]. Journal of Luminescence, 2019, 209:8-13. [7] BARRERA E W, MADUENO Q, NOVEGIL F J, et al. Luminescence upconversion of Er:Yb:KY(WO4)2 green phosphor with high color purity[J]. Optical Materials, 2018, 84:354-359. [8] LI J G, WANG Z H, ZHU Q, et al. Upconverting YbPO4:RE monospheres (RE=Ho, Er, Tm)[J]. Journal of the American Ceramic Society, 2018, 101(10):4519-4525. [9] 庞涛, 王玉, 谢建平. KY3F10:Yb3+, Tm3+, Ho3+纳米晶在单一980 nm辐射下的色稳定上转换白光[J]. 发光学报, 2018, 39(9):1233-1238. PANG T, WANG Y, XIE J P. Color stable upconversion white emission of KY3F10:Yb3+, Tm3+, Ho3+nanocrystals under single 980 nm excitation[J]. Chinese Journal of Luminescence, 2018, 39(9):1233-1238. [10] ROSAS C A, CARRILLO R F D J, GARCIA M A, et al. Sol-gel synthesis and up-conversion luminescence of GdPO4-Gd3PO7:Yb3+, Ln3+ (Ln=Er, Ho, Tm) phosphor[J]. Materials Letters, 2018, 226:34-37. [11] 张阳熠, 江锡顺, 董可秀, 等. Yb3+-Tb3+共掺杂β-NaYF4纳米晶的上转换发光特性研究[J]. 中国稀土学报, 2016, 34(5):545-548. ZHANG Y Y, JIANG X S, DONG K X, et al. Up-conversion luminescence of Yb3+-Tb3+ co-doped β-NaYF4 nanocrystals[J]. Journal of the Chinese Society of Rare Earths, 2016, 34(5):545-548. [12] 贾晓卉, 曾晓岛, 朱莉萍, 等. 采用高分子网络凝胶法制备LaP3O9:Eu3+发光材料及其性能[J]. 中国有色金属学报, 2015, 25(4):1032-1038. JIA X H, ZENG X D, ZHU L P, et al. Polyacrylamide gel synthesis of LaP3O9:Eu3+ phosphor and its properties[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(4):1032-1038. [13] HOPPE H A, KAZMIERCZAK K, KACPRZAK S, et al. Surprising luminescent properties of the polyphosphates Ln(PO3)3:Eu (Ln=Y, Gd, Lu)[J]. Dalton Trans, 2011, 40(39):9971-9976. [14] BRICHE S, ZAMBON D, BOYER D, et al. Sol-gel derived Y(PO3)3 polyphosphate:synthesis and characterization[J]. Optical Materials, 2006, 28(6/7):615-620. [15] ZHANG X G, CHEN P C, WANG Z Z, et al. Structure and spectroscopic properties of (Y, Eu)(PO3)3 polyphosphate red phosphors[J]. Solid State Sciences, 2016, 58:80-85. [16] WANG D, WANG Y H, SHI Y R. Photoluminescence properties of Eu3+ in Y(PO3)3 under VUV excitation[J]. Journal of Luminescence, 2011, 131:1154-1157. [17] ILIEVA D, KOVACHEVA D, PETKOV C, et al. Vibrational spectra of R(PO3)3 metaphosphates (R=Ga, In, Y, Sm, Gd, Dy)[J]. Journal of Raman Spectroscopy, 2001, 32(11):893-899. [18] SECU C E, MATEI E, NEGRILA C, et al. The influence of the nanocrystals size and surface on the Yb/Er doped LaF3 luminescence properties[J]. Journal of Alloys and Compounds, 2019, 791:1098-1104. [19] WEI Y L, LIU X Y, CHI X N, et al. Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+glass-ceramics[J]. Journal of Alloys and Compounds, 2013, 578:385-388. [20] ILIEVA D, KOVACHEVA D, COLE J M, et al. Structure and devitrification chemistry of Re(PO3)3 (Re=La, Pr, Nd, Gd, Dy, Y) metaphosphate glasses[J]. Phosphorus Research Bulletin, 2002, 13:137-146. [21] 曲广媛, 董宁, 郭海, 等. 闪烁体材料MBPO5:Ce3+ (M=Ca, Sr, Ba)的制备及光谱性质[J]. 发光学报, 2005, 26(2):199-204. QU G Y, DONG N, GUO H, et al. Synthesis and spectroscopic properties of MBPO5:Ce3+(M=Ca, Sr, Ba)[J]. Chinese Journal of Luminescence, 2005, 26(2):199-204. [22] 邱桂明, 许成科, 黄翀. Ca2SnO4:Tb3+绿色荧光粉的制备及光致发光研究[J]. 光谱学与光谱分析, 2012, 31(11):2906-2909. QIU G M, XU C K, HUANG C. Preparation and luminescent properties of a green Ca2SnO4:Tb3+ phosphor[J]. Spectroscopy and Spectral Analysis, 2012, 31(11):2906-2909. [23] 黎学明, 陶传义, 孔令峰, 等. (Y3-x-yREx) Al5O12:Cey(RE=Tb, Gd)荧光粉晶体结构与光致发光[J]. 功能材料, 2008, 39(1):16-19. LI X M, TAO C Y, KONG L F, et al. Crystal structure and luminescence properties of (Y3-x-yREx) Al5O12:Cey(RE=Tb, Gd) phosphor[J]. Journal of Functional Materials, 2008, 39(1):16-19. [24] 陈茜, 史元元, 陈宁远, 等. Sr2MgSi2O7:Tb3+, Li+荧光粉的合成和发光机理[J]. 无机化学学报, 2012, 28(2):233-238. CHEN X, SHI Y Y, CHEN N Y, et al. Synthesis and luminescent mechanism of Sr2MgSi2O7:Tb3+, Li+phosphor[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(2):233-238. [25] KATARZYNA P M O, MICHAL S, AGNIESZKA K, et al. Near-infrared excited luminescence and in vitro imaging of HeLa cells by using Mn2+ enhanced Tb3+, Yb3+ cooperative upconversion in NaYF4 nanocrystals[J]. Nanoscale Advances, 2019, 1(9):3463-3473. [26] SOBIERAJSKA P, WIGLUSZ R J. Influence of the grain sizes on stokes and anti-stokes fluorescence in the Yb3+ and Tb3+ ions co-doped nanocrystalline fluorapatite[J]. Journal of Alloys and Compounds, 2019, 785:808-818. [27] 孟庆裕, 陈宝玖, 赵晓霞, 等. Tb3+掺杂Y2O3纳米晶体中Tb3+离子4f5d跃迁及能量传递的研究[J]. 光学学报, 2007, 27(2):295-301. MENG Q Y, CHEN B J, ZHAO X X, et al. 4f 5d transition and energy transfer of Tb3+ doped Y2O3 nanocrystalline[J]. Acta Optica Sinica, 2007, 27(2):295-301. [28] LIU Y F, ZHANG J X, ZHANG C H, et al. High efficiency green phosphor Ba9Lu2Si6O24:Tb3+:visible quantum cutting via cross-relaxation energy transfers[J]. The Journal of Physical Chemistry C, 2016, 120(4):2362-2370. [29] VERMA R K, KUMAR K, RAI S B.Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO-Al2O3:Tb (M=Mg, Ca, Sr, Ba) phosphor materials[J]. Solid State Sciences, 2010, 12(7):1146-1151.