Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 106-113    DOI: 10.11868/j.issn.1001-4381.2019.001062
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
颜色可调Y(PO3)3:Tb3+,Yb3+上转换发光材料的共沉淀制备及性能
李慧玲1,2, 李蓝苹1,2, 饶啟亮1,2, 张玲1,2, 陈雪羽1,2, 顾曼琦1,2, 杨锦瑜1,2
1. 贵州师范大学 化学与材料科学学院, 贵阳 550001;
2. 贵州省功能材料化学重点实验室, 贵阳 550001
Coprecipitation synthesis and properties of color tunable and upconversion luminescence in Tb3+ and Yb3+ co-doped Y(PO3)3 materials
LI Hui-ling1,2, LI Lan-ping1,2, RAO Qi-liang1,2, ZHANG Ling1,2, CHEN Xue-yu1,2, GU Man-qi1,2, YANG Jin-yu1,2
1. School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China;
2. Key Laboratory for Functional Materials Chemistry of Guizhou Province, Guiyang 550001, China
全文: PDF(4971 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 采用共沉淀法制备Tb3+,Yb3+共掺杂Y(PO33上转换发光材料,通过X射线粉末衍射仪(XRD)、扫描电镜(SEM)、傅里叶红外光谱(FT-IR)和上转换荧光光谱仪(UPL)对制备产物的结构和性能进行表征分析。结果表明,所制备样品属于单斜晶系空间群为P21/c的Tb3+和Yb3+共掺杂Y(PO33晶体。在近红外光的激发下,所制备Y(PO33x Tb3+,20%(摩尔分数,下同) Yb3+样品发射出Tb3+特征的蓝绿色光。Tb3+掺杂量直接影响着制备产物的上转换发光性能,当Tb3+掺杂量为2%~10%时,Tb3+5D47F6发射峰分裂为481 nm和491 nm两个发射峰;当掺杂量为5%~20%时,位于547 nm处绿光发射为最强发射峰;当Tb3+掺杂量高于20%时观察到浓度猝灭现象。Tb3+/Yb3+的掺杂量比例和近红外光激发功率密度对所制备样品的上转换发光性能也有明显影响。适当调节样品中Tb3+/Yb3+掺杂比例可实现对制备的Y(PO33x Tb3+,20% Yb3+样品的上转换发射蓝绿光颜色的调控。对Y(PO33:Tb3+,Yb3+样品的上转换发光机理进行探索,其中属于Tb3+特征的5D37FJJ=6,5,4)和5D47FJJ=6,5,4,3)跃迁带发射分别属于三光子吸收和双光子吸收机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李慧玲
李蓝苹
饶啟亮
张玲
陈雪羽
顾曼琦
杨锦瑜
关键词 Y(PO3)3Tb3+/Yb3+共沉淀共沉淀法颜色可调上转换发光性能    
Abstract:Tb3+ and Yb3+ co-doped Y(PO3)3 upconversion luminescence phosphors were prepared by coprecipitation method. The structure and optical properties of the as-synthesized Y(PO3)3: Tb3+,Yb3+ samples were investigated by XRD, SEM, FI-IR and upconversion luminescence spectrophotometer (UPL), respectively. XRD results show that the as-synthesized samples are Tb3+ and Yb3+ co-doped Y(PO3)3 crystals with monoclinic structure (space group P21/c). UPL results display that the obtained Tb3+ and Yb3+ co-doped Y(PO3)3 samples emit the Tb3+ characteristic upconversion blue-green luminescence under 980 nm excitation. The doping content of Tb3+ ions affects the upconversion luminescence properties of the as-prepared Y(PO3)3: x Tb3+, 20%(mole fraction,the same below) Yb3+ samples. When the doping amount of Tb3+ is 2%-10%, the 5D47F6 emission peak of the Y(PO3)3: x Tb3+, 20% Yb3+ samples splits into two emission peaks centered at 481 nm and 491 nm. The dominant upconversion peak is located at 547 nm for the Y(PO3)3: x Tb3+, 20% Yb3+ samples when the Tb3+ doping content is 10%-20%. The concentration quenching can be observed when the doping amount of Tb3+ is over 20%. The doping ratio of Tb3+ to Yb3+ and the excitation power density also exhibit effect on the upconversion luminescence properties of the prepared samples. The upconversion blue-green emission color of the as prepared Tb3+ and Yb3+ co-doped Y(PO3)3 samples can be tuned by changing the doping amount ratio of Tb3+ to Yb3+.The upconversion luminescence mechanism of Y(PO3)3: Tb3+, Yb3+ samples was also discussed. The 5D37FJ (J=6,5,4) and 5D47FJ (J=6,5,4,3) upconversion luminescence are attributed to a three- and two-photon absorption mechanisms, respectively.
Key wordsY(PO3)3    Tb3+/Yb3+ co-doped    coprecipitation method    color-tunable    up-conversion luminescence property
收稿日期: 2019-11-19      出版日期: 2021-05-21
中图分类号:  TB383  
  O611.4  
基金资助:贵州省科学技术基金资助项目(黔科合基础[2019]1229);国家自然科学基金(213610007,51776046)
通讯作者: 杨锦瑜(1978-),男,教授,博士,主要研究方向为稀土发光材料及光催化材料的合成及理论研究,联系地址:贵州省贵阳市云岩区宝山北路180号贵州师范大学化学与材料科学学院(550001),jinyuyang@gmail.com     E-mail: jinyuyang@gmail.com
引用本文:   
李慧玲, 李蓝苹, 饶啟亮, 张玲, 陈雪羽, 顾曼琦, 杨锦瑜. 颜色可调Y(PO3)3:Tb3+,Yb3+上转换发光材料的共沉淀制备及性能[J]. 材料工程, 2021, 49(5): 106-113.
LI Hui-ling, LI Lan-ping, RAO Qi-liang, ZHANG Ling, CHEN Xue-yu, GU Man-qi, YANG Jin-yu. Coprecipitation synthesis and properties of color tunable and upconversion luminescence in Tb3+ and Yb3+ co-doped Y(PO3)3 materials. Journal of Materials Engineering, 2021, 49(5): 106-113.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001062      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/106
[1] RAFIQUE R, BAEK S H, PHAN L M T, et al. A facile hydro-thermal synthesis of highly luminescent NaYF4:Yb3+/Er3+ up-conversion nanoparticles and their biomonitoring capability[J]. Materials Science and Engineering:C, 2019, 99:1067-1074.
[2] 吴亚丹, 胡圳, 赵丽, 等. 上转换发光材料La(OH)3:Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 材料导报, 2018, 32(2):708-714. WU Y D, HU Z, ZHAO L, et al. The preparation of an upconversion luminescent material La(OH)3:Er3+/Yb3+ and its application in dye-sensitized solar cells[J]. Material Reports, 2018, 32(2):708-714.
[3] 简荣华, 庞涛. Yb3+/Er3+共掺Gd2Mo3O12的强绿色上转换发光及温度传感特性[J]. 中国稀土学报, 2018, 36(5):533-540. JIAN R H, PANG T. Strong green upconversion luminescence and temperature sensing properties of Yb3+/Er3+ co-doped Gd2Mo3O12 phosphors[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(5):533-540.
[4] NANNURI S H, SAMAL A R, SUBASG C K, et al. Tuning of structural, laser power-dependent and temperature dependent luminescence properties of NaYF4:Yb, Er (Y:88%, Yb:10% and Er:2%) submicron crystals using Cr3+ ion doping[J]. Journal of Alloys and Compounds, 2019, 777:894-901.
[5] CHOUDHARY A K, DWIVEDI A, BAHADUR A, et al. Enhanced upconversion emission and temperature sensor sensitivity in presence of Bi3+ ions in Er3+/Yb3+ co-doped MgAl2O4 phosphor[J]. Ceramics International, 2018, 44(8):9633-9642.
[6] XIA H, LEI L, XIA J N, et al. Yb/Er/Tm tri-doped Na3ZrF7 upconversion nanocrystals for high performance temperature sensing[J]. Journal of Luminescence, 2019, 209:8-13.
[7] BARRERA E W, MADUENO Q, NOVEGIL F J, et al. Luminescence upconversion of Er:Yb:KY(WO4)2 green phosphor with high color purity[J]. Optical Materials, 2018, 84:354-359.
[8] LI J G, WANG Z H, ZHU Q, et al. Upconverting YbPO4:RE monospheres (RE=Ho, Er, Tm)[J]. Journal of the American Ceramic Society, 2018, 101(10):4519-4525.
[9] 庞涛, 王玉, 谢建平. KY3F10:Yb3+, Tm3+, Ho3+纳米晶在单一980 nm辐射下的色稳定上转换白光[J]. 发光学报, 2018, 39(9):1233-1238. PANG T, WANG Y, XIE J P. Color stable upconversion white emission of KY3F10:Yb3+, Tm3+, Ho3+nanocrystals under single 980 nm excitation[J]. Chinese Journal of Luminescence, 2018, 39(9):1233-1238.
[10] ROSAS C A, CARRILLO R F D J, GARCIA M A, et al. Sol-gel synthesis and up-conversion luminescence of GdPO4-Gd3PO7:Yb3+, Ln3+ (Ln=Er, Ho, Tm) phosphor[J]. Materials Letters, 2018, 226:34-37.
[11] 张阳熠, 江锡顺, 董可秀, 等. Yb3+-Tb3+共掺杂β-NaYF4纳米晶的上转换发光特性研究[J]. 中国稀土学报, 2016, 34(5):545-548. ZHANG Y Y, JIANG X S, DONG K X, et al. Up-conversion luminescence of Yb3+-Tb3+ co-doped β-NaYF4 nanocrystals[J]. Journal of the Chinese Society of Rare Earths, 2016, 34(5):545-548.
[12] 贾晓卉, 曾晓岛, 朱莉萍, 等. 采用高分子网络凝胶法制备LaP3O9:Eu3+发光材料及其性能[J]. 中国有色金属学报, 2015, 25(4):1032-1038. JIA X H, ZENG X D, ZHU L P, et al. Polyacrylamide gel synthesis of LaP3O9:Eu3+ phosphor and its properties[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(4):1032-1038.
[13] HOPPE H A, KAZMIERCZAK K, KACPRZAK S, et al. Surprising luminescent properties of the polyphosphates Ln(PO3)3:Eu (Ln=Y, Gd, Lu)[J]. Dalton Trans, 2011, 40(39):9971-9976.
[14] BRICHE S, ZAMBON D, BOYER D, et al. Sol-gel derived Y(PO3)3 polyphosphate:synthesis and characterization[J]. Optical Materials, 2006, 28(6/7):615-620.
[15] ZHANG X G, CHEN P C, WANG Z Z, et al. Structure and spectroscopic properties of (Y, Eu)(PO3)3 polyphosphate red phosphors[J]. Solid State Sciences, 2016, 58:80-85.
[16] WANG D, WANG Y H, SHI Y R. Photoluminescence properties of Eu3+ in Y(PO3)3 under VUV excitation[J]. Journal of Luminescence, 2011, 131:1154-1157.
[17] ILIEVA D, KOVACHEVA D, PETKOV C, et al. Vibrational spectra of R(PO3)3 metaphosphates (R=Ga, In, Y, Sm, Gd, Dy)[J]. Journal of Raman Spectroscopy, 2001, 32(11):893-899.
[18] SECU C E, MATEI E, NEGRILA C, et al. The influence of the nanocrystals size and surface on the Yb/Er doped LaF3 luminescence properties[J]. Journal of Alloys and Compounds, 2019, 791:1098-1104.
[19] WEI Y L, LIU X Y, CHI X N, et al. Intense upconversion in novel transparent NaLuF4:Tb3+, Yb3+glass-ceramics[J]. Journal of Alloys and Compounds, 2013, 578:385-388.
[20] ILIEVA D, KOVACHEVA D, COLE J M, et al. Structure and devitrification chemistry of Re(PO3)3 (Re=La, Pr, Nd, Gd, Dy, Y) metaphosphate glasses[J]. Phosphorus Research Bulletin, 2002, 13:137-146.
[21] 曲广媛, 董宁, 郭海, 等. 闪烁体材料MBPO5:Ce3+ (M=Ca, Sr, Ba)的制备及光谱性质[J]. 发光学报, 2005, 26(2):199-204. QU G Y, DONG N, GUO H, et al. Synthesis and spectroscopic properties of MBPO5:Ce3+(M=Ca, Sr, Ba)[J]. Chinese Journal of Luminescence, 2005, 26(2):199-204.
[22] 邱桂明, 许成科, 黄翀. Ca2SnO4:Tb3+绿色荧光粉的制备及光致发光研究[J]. 光谱学与光谱分析, 2012, 31(11):2906-2909. QIU G M, XU C K, HUANG C. Preparation and luminescent properties of a green Ca2SnO4:Tb3+ phosphor[J]. Spectroscopy and Spectral Analysis, 2012, 31(11):2906-2909.
[23] 黎学明, 陶传义, 孔令峰, 等. (Y3-x-yREx) Al5O12:Cey(RE=Tb, Gd)荧光粉晶体结构与光致发光[J]. 功能材料, 2008, 39(1):16-19. LI X M, TAO C Y, KONG L F, et al. Crystal structure and luminescence properties of (Y3-x-yREx) Al5O12:Cey(RE=Tb, Gd) phosphor[J]. Journal of Functional Materials, 2008, 39(1):16-19.
[24] 陈茜, 史元元, 陈宁远, 等. Sr2MgSi2O7:Tb3+, Li+荧光粉的合成和发光机理[J]. 无机化学学报, 2012, 28(2):233-238. CHEN X, SHI Y Y, CHEN N Y, et al. Synthesis and luminescent mechanism of Sr2MgSi2O7:Tb3+, Li+phosphor[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(2):233-238.
[25] KATARZYNA P M O, MICHAL S, AGNIESZKA K, et al. Near-infrared excited luminescence and in vitro imaging of HeLa cells by using Mn2+ enhanced Tb3+, Yb3+ cooperative upconversion in NaYF4 nanocrystals[J]. Nanoscale Advances, 2019, 1(9):3463-3473.
[26] SOBIERAJSKA P, WIGLUSZ R J. Influence of the grain sizes on stokes and anti-stokes fluorescence in the Yb3+ and Tb3+ ions co-doped nanocrystalline fluorapatite[J]. Journal of Alloys and Compounds, 2019, 785:808-818.
[27] 孟庆裕, 陈宝玖, 赵晓霞, 等. Tb3+掺杂Y2O3纳米晶体中Tb3+离子4f5d跃迁及能量传递的研究[J]. 光学学报, 2007, 27(2):295-301. MENG Q Y, CHEN B J, ZHAO X X, et al. 4f 5d transition and energy transfer of Tb3+ doped Y2O3 nanocrystalline[J]. Acta Optica Sinica, 2007, 27(2):295-301.
[28] LIU Y F, ZHANG J X, ZHANG C H, et al. High efficiency green phosphor Ba9Lu2Si6O24:Tb3+:visible quantum cutting via cross-relaxation energy transfers[J]. The Journal of Physical Chemistry C, 2016, 120(4):2362-2370.
[29] VERMA R K, KUMAR K, RAI S B.Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO-Al2O3:Tb (M=Mg, Ca, Sr, Ba) phosphor materials[J]. Solid State Sciences, 2010, 12(7):1146-1151.
[1] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[2] 邹海强, 杨隽逸, 郑玉婴, 陈健, 卢秀恋. 液相共沉淀法制备MnO2/CNFs催化剂及其低温脱硝性能[J]. 材料工程, 2018, 46(9): 53-58.
[3] 陈洁, 袁铁江. 柠檬酸根对纳米Fe3O4制备及其性能的影响[J]. 材料工程, 2015, 43(6): 85-89.
[4] 胡志强, 黄德锋, 刘显卿, 高丽, 高宏. 纳米NiAl2O4粉体的制备与表征[J]. 材料工程, 2012, 0(8): 51-54,59.
[5] 王金香, 高岩, 杨洋, 钱潜, 刘银. Zn2+含量对纳米Ni-Zn铁氧体结构和磁性能的影响[J]. 材料工程, 2012, 0(10): 22-24,34.
[6] 郑育英, 廖世军, 黄慧民, 王俏运. NiO-YSZ纳米复合粉体的制备及其表征[J]. 材料工程, 2011, 0(8): 68-71.
[7] 王璟, 白书欣, 张长瑞. 沉淀剂对La2Zr2O7制备过程的影响[J]. 材料工程, 2010, 0(3): 22-24,88.
[8] 云月厚, 刘永林, 张伟. 化学共沉淀法制备的纳米Ni0.5Zn0.5CexFe2-xO4铁氧体微波吸收特性研究[J]. 材料工程, 2008, 0(3): 58-62.
[9] 赵原璧, 邱祖民, 刘钟薇, 黄佳英. 药用壳聚糖磁性复合微球的制备及特性[J]. 材料工程, 2008, 0(10): 358-362.
[10] 杨威, 曹传堂, 曹传宝. 共沉淀法制备锂离子电池正极材料LiFePO4及其性能研究[J]. 材料工程, 2005, 0(6): 36-40.
[11] 周小燕, 李强, 宋锋兵, 钟志锋. 掺铈钇铁石榴石(Ce:YIG)的合成[J]. 材料工程, 2002, 0(11): 11-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn