Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (11): 162-169    DOI: 10.11868/j.issn.1001-4381.2019.001093
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
三维机织复合材料/钛合金混杂板缝合连接剪切失效机理
卢轶榕1, 郑华勇2,3, 陈秀华1, 汪海1
1. 上海交通大学 航空航天学院, 上海 200240;
2. 上海宇航系统工程研究所, 上海 201109;
3. 上海市空间飞行器机构重点实验室, 上海 201108
Failure mechanism of stitched three dimension woven composite/Ti alloy hybrid board joint under shear load
LU Yi-rong1, ZHENG Hua-yong2,3, CHEN Xiu-hua1, WANG Hai1
1. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China;
2. Aerospace System Engineering Shanghai, Shanghai 201109, China;
3. Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
全文: PDF(7072 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 为研究缝合密度、缝线纤维束规格以及钛合金板上预制的缝合孔直径对经过缝合的三维机织复合材料/钛合金混杂板缝合连接结构抗剪切能力的影响,对7组缝合参数各不相同的单搭接实验件进行剪切实验。通过加载条件下的原位细观实验观察,获得不同缝合参数下接头的失效模式,给出对应载荷-位移曲线上特征点的损伤形貌。结果表明:增加碳纤维缝线的丝束规格以及增加缝合密度均能提高混杂接头的失效载荷,且增加缝合密度比增加碳纤维缝线的丝束规格对提高失效载荷的效果更明显;缝合孔直径为2 mm或4 mm对结构承载能力无明显影响,当缝合孔直径达到6 mm时,承载能力明显降低;通过细观原位力学实验观察了三维机织复合材料/钛合金混杂板缝合结构剪切破坏过程;实验结果表明,搭接区的失效模式有缝线纯剪断、缝线抽出与剪断混合以及缝线挤出/剪断混合3种。缝合密度的变化是接头失效模式改变的主要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢轶榕
郑华勇
陈秀华
汪海
关键词 三维机织/钛合金混杂缝合单搭接连接剪切性能原位实验失效机理    
Abstract:In order to study the effect of stitching density, tow size of the suture and diameter of the stitching hole on the shear property of the stitched three-dimensional woven composite/titanium hybrid board stitching connection structure, seven groups of samples with different stitching densities, tow size of the suture and diameter of the stitching hole were tested. A reference group whose samples were unstitched was also tested to show the effect of stitching on the joint. Different failure modes of the lap zone with different stitching parameters were observed in in-situ meso-experiment, and the damage morphologies of the characteristic points on the load-displacement curve were given. The result shows that increasing tow size of the suture and increasing stitching density can both increase the failure load of the hybrid joint. Increasing the stitching density is proved more effective in improving the failure load. Doubling the stitching density can increase the failure load of the stitched joint about 82.0%. Doubling the tow size of the suture can only increase the failure load of the joint about 24.3%; Whether the diameter of the stitching hole is 2 mm or 4 mm do not influence the bearing capacity of the structure obviously, and when the stitching hole diameter reaches 6 mm, the bearing capacity is reduced due to the low strength of the epoxy resin in the gap between stitching hole and suture. It is dangerous to increase diameter of stitching hole above 4 mm; the shear failure of the stitched three-dimension woven composite/titanium alloy hybrid structure is observed by mesoscopic mechanical test. Composite/titanium alloy interface failure, crack initiation and extension in composite or in lap zone and failure of the lap zone are the three main stages of the structure failure observed in the test; The suture failure in the connect zone includes suture pull out and suture cut off. There are three failure modes of the lap zone observed in test. In suture cut off mode, all sutures in lap zone are cut off. The position at which the suture is cut is related to the diameter of the stitching hole. In suture cut off/pull out mixed mode, some of the interface between suture and three-dimension woven composites fail and the suture is partly or completely pull out. In the group with high stitching density, sutures near the end of the three-dimension woven composite crush the composite and extrude out of the composite. Stitching density is the major factor in the failure mode of the joint.
Key wordsthree-dimension woven composite/Ti alloy hybrid    stitching single-lap connect    shear pro-perty    in-situ test    failure mechanism
收稿日期: 2019-11-27      出版日期: 2020-11-20
中图分类号:  TB333  
基金资助: 
通讯作者: 陈秀华(1977-),男,高级工程师,博士,研究方向为复合材料结构设计与实验,联系地址:上海市闵行区东川路800号上海交通大学航空航天学院(200240),E-mail:chenxiuhua@sjtu.edu.cn     E-mail: chenxiuhua@sjtu.edu.cn
引用本文:   
卢轶榕, 郑华勇, 陈秀华, 汪海. 三维机织复合材料/钛合金混杂板缝合连接剪切失效机理[J]. 材料工程, 2020, 48(11): 162-169.
LU Yi-rong, ZHENG Hua-yong, CHEN Xiu-hua, WANG Hai. Failure mechanism of stitched three dimension woven composite/Ti alloy hybrid board joint under shear load. Journal of Materials Engineering, 2020, 48(11): 162-169.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001093      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/162
[1] 乔海涛,梁滨,张军营,等.先进复合材料结构胶接体系的研发与应用[J].材料工程,2018,46(12):38-47. QIAO H T, LIANG B, ZHANG J Y, et al. Development and application of adhesive materials for advanced composite bonding[J]. Journal of Materials Engineering, 2018,46(12):38-47.
[2] 曲春艳,李琳,王德志.钛合金胶接表面处理研究[J].材料工程,2010(12):82-85. QU C Y, LI L, WANG D Z. Study on surface treatment of titanium alloy for adhesive bonding[J]. Journal of Materials Engineering, 2010(12):82-85.
[3] WANG S N, LI Y, GUO Y, et al. Development of a two-component structural adhesive for bonding of metals and polymeric composites[J]. International Journal of Adhesion and Adhesives, 2019, 90:38-46.
[4] CAO Y J, CAO Z Q, ZUO Y J, et al. Numerical and experimental investigation of fitting tolerance effects on damage and failure of CFRP/Ti double-lap single-bolt joints[J]. Aerospace Science and Technology, 2018, 78:461-470.
[5] 余海燕,李佳旭,周辰晓. 碳纤维复合材料与高强度钢板螺栓连接拉伸性能[J]. 同济大学学报(自然科学版), 2018, 46(5):680-686. YU H Y, LI J X, ZHOU C X. Tensile properties of bolted joints between CFRP and high strength steel plate[J]. Journal of Tongji University(Natural Science), 2018, 46(5):680-686.
[6] VANDERKLOK A, DUTTA A, TEKALUR S A. Metal to composite bolted joint behavior evaluated at impact rates of loading[J]. Composite Structures, 2013, 106:446-452.
[7] GERENDT C, DEAN A, MAHRHOLZ T, et al. On the progressive failure simulation and experimental validation of fiber metal laminate bolted joints[J]. Composite Structures, 2019, 229:111368.
[8] NGUYEN A T T, BRANDT M, FEIH S, et al. Pin pull-out behavior for hybrid metal-composite joints with integrated reinforcements[J]. Composite Structures, 2016, 155:160-172.
[9] TANG H Q, LIU L Q. A novel metal-composite joint and its structural performance[J]. Composite Structures, 2018, 206:33-41.
[10] BIGAUD J, ABOURA Z, MARTINS A T, et al. Analysis of the mechanical behavior of composite T-joints reinforced by one side stitching[J]. Composite Structures, 2018, 184:249-255.
[11] 李梦佳,陈普会,孔斌,等. 缝合参数对复合材料T型接头拉脱承载能力的影响[J]. 复合材料学报, 2016, 33(3):681-688. LI M J, CHEN P H, KONG B, et al. Effects of parameters of stitching on pull-off carrying capacity of composite T-joint[J]. Acta Materiae Compositae Sinica, 2016, 33(3):681-688.
[12] 焦亚男,李嘉禄,韩雪梅,等. 缝合连接三维编织复合材料拉伸性能实验研究[J]. 复合材料学报, 2008, 25(1):127-132. JIAO Y N, LI J L, HAN X M, et al. Experimental investigation on tensile property of stitching joint 3D braided composites[J]. Acta Materiae Compositae Sinica, 2008, 25(1):127-132.
[13] 焦亚男,李嘉禄,韩雪梅.三维编织复合材料缝合连接设计及破坏机制[J].纺织学报,2008,29(6):48-51. JIAO Y N, LI J L, HAN X M. Design and destroying mechanism of stitching joint 3-D braided composites[J]. Journal of Textile Research, 2008,29(6):48-51.
[14] JAIN L K, LEONG K H, MAI Y W, et al. Effect of through-thickness stitching on the fatigue life of composite single-lap joints[J]. Applied Composite Materials, 1998, 5:399-409.
[15] GHASEMNEJAD H, ARGENTIERO Y, TEZ T A, et al. Impact damage response of natural stitched single lap-joint in composite structures[J]. Materials & Design, 2013, 51:552-560.
[16] MOURITZ A P, COX B N. A mechanistic approach to the properties of stitched laminates[J]. Composites:Part A, 2000, 31(1):1-27.
[17] AN W J, KIM C H, CHOI J H, et al. Static strength of RTM composite joint with Ⅰ-fiber stitching process[J]. Composite Structures, 2019, 210:348-353.
[1] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[2] 陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
[3] 陈亚军, 王先超, 王付胜, 周剑, 吴悦雷. 不同应力幅比加载下2A12铝合金的多轴疲劳性能[J]. 材料工程, 2017, 45(9): 136-142.
[4] 陈亚军, 王先超, 王付胜, 刘波. 2A12铝合金的多轴加载疲劳行为[J]. 材料工程, 2017, 45(8): 68-75.
[5] 雍薇, 黄兴民, 张雷, 程乾, 戴光泽. 热浸镀铝球墨铸铁失效机理研究[J]. 材料工程, 2016, 44(8): 77-84.
[6] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[7] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
[8] 杨金丽, 雷永平, 林健, 肖慧. 银含量对跌落条件下无铅焊点疲劳寿命和失效模式的影响[J]. 材料工程, 2013, 0(12): 74-79.
[9] 朴钟宇, 徐滨士, 王海斗, 濮春欢. 等离子喷涂铁基涂层的接触疲劳失效机理研究[J]. 材料工程, 2009, 0(11): 69-73.
[10] 李美姮, 张重远, 孙晓峰, 宫声凯, 胡望宇, 管恒荣, 胡壮麒. EB-PVD热障涂层的热循环失效机理[J]. 材料工程, 2002, 0(8): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn