Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (1): 23-34    DOI: 10.11868/j.issn.1001-4381.2019.001097
  新能源材料专栏 本期目录 | 过刊浏览 | 高级检索 |
燃料电池用高温质子交换膜的研究进展
孙鹏, 李忠芳, 王传刚, 王燕, 崔伟慧, 裴洪昌, 尹晓燕
山东理工大学 化学化工学院, 山东 淄博 255049
Research progress of high temperature proton exchange membranes applied in fuel cells
SUN Peng, LI Zhong-fang, WANG Chuan-gang, WANG Yan, CUI Wei-hui, PEI Hong-chang, YIN Xiao-yan
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
全文: PDF(8075 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 燃料电池是一种高效的清洁能源技术,可缓解当今社会面临的能源和环境问题。质子交换膜燃料电池是一种重要的燃料电池类型,质子交换膜是其关键组件,起到传导质子、隔绝电子和阴阳两极的反应物的作用。质子交换膜燃料电池在低温下存在许多难以解决的问题,升高工作温度可以解决这些问题。因此需要开发高温低湿度下工作的膜材料。本文综述了高温质子交换膜的主要类型、制备与改性方法和质子传导机制,指出质子导体掺杂的聚苯并咪唑(PBI)类膜材料在高温低湿度下作为质子交换膜适用的巨大潜力,并探讨了复合PBI高温质子交换膜的制备、掺杂的质子导体类型和性能提升方法。最后本文归纳了高温质子交换膜面临的挑战,并指出了该类材料未来的研究方向,如设计合成新型质子导体、改善PBI抗氧化稳定性、调控膜微观结构来提升性能和开发新型聚合物电解质。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙鹏
李忠芳
王传刚
王燕
崔伟慧
裴洪昌
尹晓燕
关键词 燃料电池高温质子交换膜复合材料质子电导率聚苯并咪唑    
Abstract:The fuel cell technology is a highly-efficient clean energy technology which can alleviate the power and environmental problems. Proton exchange membrane fuel cell (PEMFC) is an important type of fuel cell, of which proton exchange membrane is the key component which is proton-conductive and electron-insulating. Elevation of the working temperature of PEMFCs can solve the intractable issues for low-temperature PEMFCs. Therefore, proton exchange membrane materials which can work under high temperature and low relative humidity are required. The main types, preparation and modification methods, and proton exchange mechanisms of high temperature proton exchange membranes were summarized in this review. Proton conductor doped polybenzimidazole (PBI) based membrane materials are potential candidates for high temperature low humidity proton exchange membranes. The preparation, types of proton conductors and performance enhancement methods of PBI based high temperature proton exchange membranes were discussed. The challenges and research trends of high temperature proton exchange membranes were pointed out such as synthesis of new types of proton conductor, improvement of PBI anti-oxidation stability, regulation of membrane microstructure to improve the performance and develop novel polymer electrolytes.
Key wordsfuel cell    high temperature proton exchange membrane    composite material    proton conductivity    polybenzimidazole
收稿日期: 2019-11-27      出版日期: 2021-01-14
中图分类号:  TM911.48  
基金资助:国家自然科学基金(21776167,21805170,21276148);山东省自然科学基金(ZR2019QB012);化学工程国家重点实验室基金(SKL-ChE-14B01);淄博市校城融合项目(2019ZBXC411)
通讯作者: 李忠芳(1962-),男,教授,博士,研究方向为聚合物膜燃料电池、金属空气电池,联系地址:山东省淄博市张周路12号山东理工大学化学化工学院(255049),E-mail:zhfli@sdut.edu.cn     E-mail: zhfli@sdut.edu.cn
引用本文:   
孙鹏, 李忠芳, 王传刚, 王燕, 崔伟慧, 裴洪昌, 尹晓燕. 燃料电池用高温质子交换膜的研究进展[J]. 材料工程, 2021, 49(1): 23-34.
SUN Peng, LI Zhong-fang, WANG Chuan-gang, WANG Yan, CUI Wei-hui, PEI Hong-chang, YIN Xiao-yan. Research progress of high temperature proton exchange membranes applied in fuel cells. Journal of Materials Engineering, 2021, 49(1): 23-34.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001097      或      http://jme.biam.ac.cn/CN/Y2021/V49/I1/23
[1] LEMMON J P. Energy:reimagine fuel cells[J]. Nature, 2015, 525(7570):447-449.
[2] CANO Z P, BANHAM D, YE S, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy, 2018, 3(4):279-289.
[3] O'HAYRE R, CHA S W, COLELLA W, et al. Fuel cell fundamentals. Chapter 1:introduction[M]. New Jersey:John Wiley & Sons, Inc, 2016:1-24.
[4] WILBERFORCE T, ALASWAD A, PALUMBO A, et al. Advances in stationary and portable fuel cell applications[J]. International Journal of Hydrogen Energy, 2016, 41(37):16509-16522.
[5] 魏成玲,沈亚云,杨智,等. 硫源对Fe/VS/C催化剂氧还原活性的影响研究[J]. 贵州师范大学学院(自然科学版),2018,36(6):58-62.
[6] KRAYTSBERG A, EIN-ELI Y. Review of advanced materials for proton exchange membrane fuel cells[J]. Energy & Fuels, 2014, 28(12):7303-7330.
[7] ZHANG H, SHEN P K. Advances in the high performance polymer electrolyte membranes for fuel cells[J]. Chemical Society Reviews, 2012, 41(6):2382-2394.
[8] ZHANG L, CHAE S R, HENDREN Z, et al. Recent advances in proton exchange membranes for fuel cell applications[J]. Chemical Engineering Journal, 2012, 204/206:87-97.
[9] JIANG S P. Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(21):7637-7655.
[10] BRANCO C M, SHARMA S, DE CAMARGO FORTE M M, et al. New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells[J]. Journal of Power Sources, 2016, 316:139-159.
[11] DUPUIS A C. Proton exchange membranes for fuel cells operated at medium temperatures:materials and experimental techniques[J]. Progress in Materials Science, 2011, 56(3):289-327.
[12] MORANDI C G, PEACH R, KRIEG H M, et al. Novel imidazolium-functionalized anion-exchange polymer PBI blend membranes[J]. Journal of Membrane Science, 2015, 476:256-263.
[13] FECHETE R, DEMCO D E, ZHU X, et al. Water states and dynamics in perfluorinated ionomer membranes by 1H one-and two-dimensional NMR spectroscopy, relaxometry, and diffusometry[J]. Chemical Physics Letters, 2014, 597:6-15.
[14] KUSOGLU A, WEBER A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chemical Reviews, 2017, 117(3):987-1104.
[15] OZDEN A, ERCELIK M, DEVRIM Y, et al. Evaluation of sulfonated polysulfone/zirconium hydrogen phosphate composite membranes for direct methanol fuel cells[J]. Electrochimica Acta, 2017, 256(Suppl C):196-210.
[16] XIE H, TAO D, XIANG X, et al. Synthesis and properties of highly branched star-shaped sulfonated block poly(arylene ether)s as proton exchange membranes[J]. Journal of Membrane Science, 2015, 473:226-236.
[17] SUN H, TANG B, WU P. Two-dimensional zeolitic imidazolate framework/carbon nanotube hybrid networks modified proton exchange membranes for improving transport properties[J]. ACS Applied Materials & Interfaces, 2017, 9(40):35075-35085.
[18] YAO Z, ZHANG Z, HU M, et al. Perylene-based sulfonated aliphatic polyimides for fuel cell applications:performance enhancement by stacking of polymer chains[J]. Journal of Membrane Science, 2018, 547(Suppl C):43-50.
[19] LI Q, JENSEN J O, SAVINELL R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Progress in Polymer Science, 2009, 34(5):449-477.
[20] BOSE S, KUILA T, NGUYEN T X H, et al. Polymer membranes for high temperature proton exchange membrane fuel cell:recent advances and challenges[J]. Progress in Polymer Science, 2011, 36(6):813-843.
[21] LI C, HUANG N, JIANG Z, et al. Sulfonated holey graphene oxide paper with SPEEK membranes on its both sides:a sandwiched membrane with high performance for semi-passive direct methanol fuel cells[J]. Electrochimica Acta, 2017, 250:68-76.
[22] LEE J R, WON J H, YOON K S, et al. Multilayer-structured, SiO2/sulfonated poly(phenylsulfone) composite membranes for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(7):6182-6188.
[23] LIU D S, ASHCRAFT J N, MANNARINO M M, et al. Spray layer-by-layer electrospun composite proton exchange membranes[J]. Advanced Functional Materials, 2013, 23(24):3087-3095.
[24] XIANG Y, LU S, JIANG S P. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors[J]. Chemical Society Reviews, 2012, 41(21):7291-7321.
[25] JIANG Y, HOU M, HAO J, et al. Enhanced durability of sulfonated poly(ether ether ketones)-based polymer electrolyte membranes by a multi-layer composite technology[J]. Solid State Ionics, 2017, 309:33-40.
[26] LEE C, PARK J, JEON Y, et al. Phosphate-modified TiO2/ZrO2 nanofibrous web composite membrane for enhanced performance and durability of high-temperature proton exchange membrane fuel cells[J]. Energy & Fuels, 2017, 31(7):7645-7652.
[27] LI Z, YUE X, HE G, et al. Enhanced water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) hybrid membrane by incorporating ellipsoidal microcapsules[J]. International Journal of Hydrogen Energy, 2015, 40(26):8398-8406.
[28] HE X, HE G, ZHAO A, et al. Facilitating proton transport in Nafion-based membranes at low humidity by incorporating multifunctional graphene oxide nanosheets[J]. ACS Applied Materials & Interfaces, 2017, 9(33):27676-27687.
[29] RU C, LI Z, ZHAO C, et al. Enhanced proton conductivity of sulfonated hybrid poly(arylene ether ketone) membranes by incorporating an amino-sulfo bifunctionalized metal-organic framework for direct methanol fuel cells[J]. ACS Applied Materials & Interfaces, 2018, 10(9):7963-7973.
[30] HAJDOK I, BONA A, WERNER H J, et al. Synthesis and characterization of fluorinated and sulfonated poly(arylene ether-1,3,4-oxadiazole) derivatives and their blend membranes[J]. European Polymer Journal, 2014, 52:76-87.
[31] ABOUZARI-LOTF E, NASEF M M, GHASSEMI H, et al. Improved methanol barrier property of Nafion hybrid membrane by incorporating nanofibrous interlayer self-immobilized with high level of phosphotungstic acid[J]. ACS Applied Materials & Interfaces, 2015, 7(31):17008-17015.
[32] DANG J, ZHAO L, ZHANG J, et al. Imidazole microcapsules toward enhanced phosphoric acid loading of polymer electrolyte membrane for anhydrous proton conduction[J]. Journal of Membrane Science, 2018, 545:88-98.
[33] ZHANG B, CAO Y, LI Z, et al. Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications[J]. Electrochimica Acta, 2017, 240:186-194.
[34] WANG J, YUE X, ZHANG Z, et al. Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes[J]. Advanced Functional Materials, 2012, 22(21):4539-4546.
[35] WANG J, ZHANG H, YANG X, et al. Enhanced water retention by using polymeric microcapsules to confer high proton conductivity on membranes at low humidity[J]. Advanced Functional Materials, 2011, 21(5):971-978.
[36] PARK J, WANG L, ADVANI S G, et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature pemfcs[J]. Electrochimica Acta, 2014, 120:30-38.
[37] PARNIAN M J, ROWSHANZAMIR S, PRASAD A K, et al. High durability sulfonated poly(ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2018, 556:12-22.
[38] SUN P, LI Z, JIN L, et al. Construction of proton channels and reinforcement of physicochemical properties of oPBI/FeSPP/GF high temperature PEM via building hydrogen bonding network[J]. International Journal of Hydrogen Energy, 2017, 42(21):14572-14582.
[39] SUN P, LI Z, JIN L, et al. Pre-oxidized acrylic fiber reinforced ferric sulfophenyl phosphate-doped polybenzimidazole-based high-temperature proton exchange membrane[J]. Macromolecular Materials and Engineering, 2017, 302(7):1600468.
[40] KALLEM P, DROBEK M, JULBE A, et al. Hierarchical porous polybenzimidazole microsieves:an efficient architecture for anhydrous proton transport via polyionic liquids[J]. ACS Applied Materials & Interfaces, 2017, 9(17):14844-14857.
[41] YANG J, JIANG H, GAO L, et al. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(6):3299-3307.
[42] SUN P, LI Z, WANG S, et al. Performance enhancement of polybenzimidazole based high temperature proton exchange membranes with multifunctional crosslinker and highly sulfonated polyaniline[J]. Journal of Membrane Science, 2018, 549:660-669.
[43] LIU X, ZHANG Y, CHEN Y, et al. A superhydrophobic bromomethylated poly(phenylene oxide) as a multifunctional polymer filler in SPEEK membrane towards neat methanol operation of direct methanol fuel cells[J]. Journal of Membrane Science, 2017, 544:58-67.
[44] SONG M, LU X, LI Z, et al. Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes[J]. International Journal of Hydrogen Energy, 2016, 41(28):12069-12081.
[45] QIU X, UEDA M, HU H, et al. Poly(2,5-benzimidazole)-grafted graphene oxide as an effective proton conductor for construction of nanocomposite proton exchange membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(38):33049-33058.
[46] YANG J, XU Y, LIU P, et al. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes[J]. Electrochimica Acta, 2015, 160:281-287.
[47] SUN P, LI Z, DONG F, et al. High temperature proton exchange membranes based on cerium sulfophenyl phosphate doped polybenzimidazole by end-group protection and hot-pressing method[J]. International Journal of Hydrogen Energy, 2017, 42(1):486-495.
[48] D'URSO C, OLDANI C, BAGLIO V, et al. Fuel cell performance and durability investigation of bimetallic radical scavengers in aquivion® perfluorosulfonic acid membranes[J]. International Journal of Hydrogen Energy, 2017, 42(46):27987-27994.
[49] SHIN D, HAN M, SHUL Y G, et al. Analysis of cerium-composite polymer-electrolyte membranes during and after accelerated oxidative-stability test[J]. Journal of Power Sources, 2018, 378:468-474.
[50] KLUMPEN C, GODRICH S, PAPASTAVROU G, et al. Water mediated proton conduction in a sulfonated microporous organic polymer[J]. Chemical Communications, 2017, 53(54):7592-7595.
[51] VUILLEUMIER R, BORGIS D. Proton conduction:hopping along hydrogen bonds[J]. Nature Chemistry, 2012, 4(6):432-433.
[52] JIA W, WU P. Stable boron nitride nanocomposites based membranes for high-efficiency proton conduction[J]. Electrochimica Acta, 2018, 273:162-169.
[53] DONNADIO A, D'AMATO R, MARMOTTINI F, et al. On the evolution of proton conductivity of aquivion membranes loaded with CeO2 based nanofillers:effect of temperature and relative humidity[J]. Journal of Membrane Science, 2019, 574:17-23.
[54] ZHANG J, ZHANG J, BAI H, et al. A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application[J]. Journal of Membrane Science, 2019, 572:496-503.
[55] SHAHGALDI S, ALAEFOUR I, LI X. The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability[J]. Applied Energy, 2018, 217:295-302.
[56] TRIGG E B, GAINES T W, MARÉCHAL M, et al. Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport[J]. Nature Materials, 2018, 17(8):725-731.
[57] FENG Z M, ZHAO Y, LI X, et al. Synthesis and characterization of a novel norbornene based copolymer[J]. CIESC Journal, 2015, 66(Suppl 2):439-444.
[58] WANG L S, LAI A N, ZHUO Y Z, et al. Properties of hybrid SPEK-C/GO composite proton exchange membranes[J]. CIESC Journal, 2015, 66(9):3605-3610.
[59] ONO Y, GOTO R, HARA M, et al. High proton conduction of organized sulfonated polyimide thin films with planar and bent backbones[J]. Macromolecules, 2018, 51(9):3351-3359.
[60] GAO S, XU H, LUO T, et al. Novel proton conducting membranes based on cross-linked sulfonated polyphosphazenes and poly(ether ether ketone)[J]. Journal of Membrane Science, 2017, 536:1-10.
[61] PINGITORE A T, HUANG F, QIAN G, et al. Durable high polymer content m/p-polybenzimidazole membranes for extended lifetime electrochemical devices[J]. ACS Applied Energy Materials, 2019, 2(3):1720-1726.
[62] JANKOWSKA A, ZALEWSKA A, SKALSKA A, et al. Proton conductivity of imidazole entrapped in microporous molecular sieves[J]. Chemical Communications, 2017, 53(16):2475-2478.
[63] HOSHINO T, HAYASHI K, SAKAMOTO W, et al. One-pot synthesis of proton-conductive inorganic-organic hybrid membranes from organoalkoxysilane and phosphonic acid derivatives[J]. Journal of Membrane Science, 2016, 502:133-140.
[64] CHEN X, LV H, LIN Q, et al. Partially fluorinated poly(arylene ether)s bearing long alkyl sulfonate side chains for stable and highly conductive proton exchange membranes[J]. Journal of Membrane Science, 2018, 549:12-22.
[65] YANG S, KIM D. Antioxidant proton conductive toughening agent for the hydrocarbon based proton exchange polymer membrane for enhanced cell performance and durability in fuel cell[J]. Journal of Power Sources, 2018, 393:11-18.
[66] BU F, ZHANG Y, HONG L, et al. 1,2,4-triazole functionalized poly(arylene ether ketone) for high temperature proton exchange membrane with enhanced oxidative stability[J]. Journal of Membrane Science, 2018, 545(Suppl C):167-175.
[67] LIU J, YU L, CAI X, et al. Sandwiching h-BN monolayer films between sulfonated poly(ether ether ketone) and Nafion for proton exchange membranes with improved ion selectivity[J]. ACS Nano, 2019, 13(2):2094-2102.
[68] YANG J, HE R, AILI D, et al. Synthesis of polybenzimidazoles[M]. Cham, Switzerland:Springer International Publishing, 2016.
[69] ASENSIO J A, SANCHEZ E M, GOMEZ-ROMERO P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. a chemical quest[J]. Chemical Society Reviews, 2010, 39(8):3210-3239.
[70] KORTE C, CONTI F, WACKERL J, et al. Uptake of protic electrolytes by polybenzimidazole-type polymers:absorption isotherms and electrolyte/polymer interactions[J]. Journal of Applied Electrochemistry, 2015, 45(8):857-871.
[71] YU T L. Polybenzimidazole/porous poly(tetrafluoro ethylene) composite membranes[M]. Cham, Switzerland:Springer International Publishing, 2016.
[72] PERRY A K, MORE L K, ANDREW PAYZANT E, et al. A comparative study of phosphoric acid-doped m-PBI membranes[J]. Journal of Polymer Science Part B, 2014, 52(1):26-35.
[73] QUARTARONE E, MUSTARELLI P. Polymer fuel cells based on polybenzimidazole/H3PO4[J]. Energy & Environmental Science, 2012, 5(4):6436-6444.
[74] WANG S W, DONG F L, LI Z F. Proton-conducting membrane preparation based on SiO2-riveted phosphotungstic acid and poly (2,5-benzimidazole) via direct casting method and its durability[J]. Journal of Materials Science, 2012, 47(11):4743-4749.
[75] ZHANG Q, LIU H, LI X, et al. Synthesis and characterization of polybenzimidazole/α-zirconium phosphate composites as proton exchange membrane[J]. Polymer Engineering & Science, 2016, 56(6):622-628.
[76] KIM T H, LIM T W, PARK Y S, et al. Proton-conducting zirconium pyrophosphate/poly(2,5-benzimidazole) composite membranes prepared by a PPA direct casting method[J]. Macromolecular Chemistry and Physics, 2007, 208(21):2293-2302.
[77] LINLIN M, MISHRA A K, KIM N H, et al. Poly(2,5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell[J]. Journal of Membrane Science, 2012, 411-412:91-98.
[78] JHENG L C, HUANG C Y, HSU S L C. Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(3):1524-1534.
[79] SUN P, LI Z, SONG M, et al. Preparation and characterization of zirconium phytate as a novel solid intermediate temperature proton conductor[J]. Materials Letters, 2017, 191:161-164.
[80] JIANG F, PU H, MEYER W H, et al. A new anhydrous proton conductor based on polybenzimidazole and tridecyl phosphate[J]. Electrochimica Acta, 2008, 53(13):4495-4499.
[81] LIN H L, TANG T H, HU C R, et al. Poly(benzimidazole)/silica-ethyl-phosphoric acid hybrid membranes for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 201:72-80.
[82] DONG F L, LI Z F, WANG S W, et al. Synthesis and characteristics of proton-conducting membranes based on cerium sulfophenyl phosphate and poly (2, 5-benzimidazole) by hot-pressing method[J]. International Journal of Hydrogen Energy, 2011, 36(17):11068-11074.
[83] WANG S, SUN P, HAO X, et al. Ferric sulfophenyl phosphate bonded with phosphotungstic acid as a novel intercalated high-temperature inorganic-organic proton conductor[J]. Materials Chemistry and Physics, 2018, 213:35-43.
[84] WANG S, SUN P, LI Z, et al. Comprehensive performance enhancement of polybenzimidazole based high temperature proton exchange membranes by doping with a novel intercalated proton conductor[J]. International Journal of Hydrogen Energy, 2018, 43(21):9994-10003.
[85] TANAKA M, TAKEDA Y, WAKIYA T, et al. Acid-doped polymer nanofiber framework:three-dimensional proton conductive network for high-performance fuel cells[J]. Journal of Power Sources, 2017, 342:125-134.
[86] KERRES J A, KATZFUß A, CHROMIK A, et al. Sulfonated poly(styrene)s-PBIOO® blend membranes:thermo-oxidative stability and conductivity[J]. Journal of Applied Polymer Science, 2014, 131(4):39889.
[87] BERBER M R, FUJIGAYA T, SASAKI K, et al. Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole[J]. Scientific Reports, 2013, 3:1764.
[88] REWAR A S, CHAUDHARI H D, ILLATHVALAPPIL R, et al. New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties[J]. Journal of Materials Chemistry A, 2014, 2(35):14449-14458.
[89] TADAVANI K F, ABDOLMALEKI A, MOLAVIAN M R, et al. Synergistic behavior of phosphonated and sulfonated groups on proton conductivity and their performance for high-temperature proton exchange membrane fuel cells (PENFCs)[J]. Energy & Fuels, 2017, 31(10):11460-11470.
[90] YANG J, AILI D, LI Q, et al. Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells[J]. Polymer Chemistry, 2013, 4(17):4768-4775.
[91] DIAZ L A, ABUIN G C, CORTI H R. Acid-doped ABPBI membranes prepared by low-temperature casting:Proton conductivity and water uptake properties compared with other polybenzimidazole-based membranes[J]. Journal of the Electrochemical Society, 2016, 163(6):F485-F491.
[92] YUAN Q, SUN G H, HAN K F, et al. Copolymerization of 4-(3,4-diamino-phenoxy)-benzoic acid and 3,4-diaminobenzoic acid towards H3PO4-doped PBI membranes for proton conductor with better processability[J]. European Polymer Journal, 2016, 85:175-186.
[93] NI J, HU M, LIU D, et al. Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells[J]. Journal of Materials Chemistry C, 2016, 4(21):4814-4821.
[94] YANG J, CLEEMANN L N, STEENBERG T, et al. High molecular weight polybenzimidazole membranes for high temperature PEMFC[J]. Fuel Cells, 2014, 14(1):7-15.
[95] LI X, WANG P, LIU Z, et al. Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2018, 393:99-107.
[96] DEVRIM Y, DEVRIM H, EROGLU I. Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(23):10044-10052.
[97] SINGHA S, JANA T. Influence of interfacial interactions on the properties of polybenzimidazole/clay nanocomposite electrolyte membrane[J]. Polymer, 2016, 98:20-31.
[98] GUERRERO MORENO N, GERVASIO D, GODÍNEZ GARCÍA A, et al. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 300:229-237.
[99] ÖZDEMIR Y, ÖZKAN N, DEVRIM Y. Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells[J]. Electrochimica Acta, 2017, 245:1-13.
[100] AILI D, LI Q, CHRISTENSEN E, et al. Crosslinking of polybenzimidazole membranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications[J]. Polymer International, 2011, 60(8):1201-1207.
[101] YANG J, LI Q, CLEEMANN L N, et al. Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications[J]. Advanced Energy Materials, 2013, 3(5):622-630.
[102] WANG L, ADVANI S G, PRASAD A K. PBI/Nafion/SiO2 hybrid membrane for high-temperature low-humidity fuel cell applications[J]. Electrochimica Acta, 2013, 105:530-534.
[1] 陈畅, 张如意, 史思涛, 马奋天. 真空退火对原位Al2O3/Fe-Cr-Ni增强复合材料性能的影响[J]. 材料工程, 2021, 49(1): 89-94.
[2] 张勋业, 张秋光, 林盼盼, 王春月, 何鹏, 林铁松, 龙伟民. Ti2AlNb合金与钛基复合材料的低温固相扩散连接机理[J]. 材料工程, 2021, 49(1): 95-103.
[3] 顾善群, 张代军, 刘燕峰, 邹齐, 陈祥宝, 李军, 付善龙. 聚酰亚胺纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(1): 119-125.
[4] 李虎, 范王腾飞, 王敏涓, 黄旭, 黄浩. SiCf/TC17复合材料界面剪切强度测试与有限元分析[J]. 材料工程, 2021, 49(1): 160-167.
[5] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[6] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[7] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[8] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[9] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[10] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[11] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[12] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[13] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[14] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[15] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn