Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (10): 74-81    DOI: 10.11868/j.issn.1001-4381.2019.001104
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
国产高性能碳纤维表征分析及复合材料力学性能研究
李国丽1,2, 彭公秋1,2, 钟翔屿1,2
1. 航空工业复合材料技术中心, 北京 101300;
2. 中航复合材料有限责任公司, 北京 101300
Characterization of domestic high performance carbon fibers and mechanical properties of carbon fibers reinforced matrix composites
LI Guo-li1,2, PENG Gong-qiu1,2, ZHONG Xiang-yu1,2
1. AVIC Composite Technology Center, Beijing 101300, China;
2. AVIC Composite Corporation Ltd., Beijing 101300, China
全文: PDF(5237 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用扫描电子显微镜(SEM)、原子力显微镜(AFM)和X射线光电子能谱仪(XPS)表征国产T800级碳纤维A和东丽T800H碳纤维的表面形貌与表面化学特性,对两种碳纤维增强高韧性环氧树脂基复合材料的力学性能进行研究。结果表明,碳纤维表面特性对复合材料界面性能具有显著影响;国产碳纤维A的表面粗糙度和表面化学活性均与东丽T800H碳纤维较为接近,室温条件下两种碳纤维复合材料的界面性能基本相当,说明国产碳纤维复合材料M-A具有良好的界面性能;在130℃湿态条件下,国产碳纤维复合材料M-A的层间剪切强度和90°拉伸强度保持率均略高东丽碳纤维复合材料M-T800H,说明国产碳纤维复合材料M-A的湿热性能良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李国丽
彭公秋
钟翔屿
关键词 碳纤维表面特性复合材料力学性能    
Abstract:The morphologies and surface chemical properties of domestic T800 grade carbon fibers A and imported Toray T800H were characterized by means of scanning electronic microscopy(SEM), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The mechanical properties of two kinds of carbon fiber reinforced high toughness epoxy resin matrix composites were studied.The results show that the surface properties of carbon fiber have a significant effect on the interface properties of the composite. The surface roughness and surface chemical activity of domestic carbon fiber A are close to those of Toray T800H carbon fiber, and the interfacial properties of the two kinds of carbon fiber composites are basically the same at room temperature, which indicates that domestic carbon fiber composite M-A has good interfacial properties. Under the condition of 130 ℃ and wet state, both the retention rate of interlaminar shear strength and 90° tensile strength of domestic carbon fiber composite M-A are slightly higher than that of Toray carbon fiber composite M-T800H, which indicates that the domestic carbon fiber composite M-A has good hydrothermal property.
Key wordscarbon fiber    surface property    composite    mechanical property
收稿日期: 2019-11-29      出版日期: 2020-10-17
中图分类号:  TB332  
通讯作者: 李国丽(1980-),女,高级工程师,博士,主要从事国产碳纤维树脂基复合材料研究工作,联系地址:北京市顺义区时骏街1号中航复合材料有限责任公司(101300),E-mail:liguoli01@163.com     E-mail: liguoli01@163.com
引用本文:   
李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48(10): 74-81.
LI Guo-li, PENG Gong-qiu, ZHONG Xiang-yu. Characterization of domestic high performance carbon fibers and mechanical properties of carbon fibers reinforced matrix composites. Journal of Materials Engineering, 2020, 48(10): 74-81.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001104      或      http://jme.biam.ac.cn/CN/Y2020/V48/I10/74
[1] LIU L S,WU F,YAO H W,et al.Investigation of surface properties of pristine and γ-irradiated PAN-based carbon fibers:effects of fiber instinct structure and radiation medium[J].Applied Surface Science,2015,337:241-248.
[2] 贺福,李润民.碳纤维在国防军工领域中的应用(1)[J].高科技纤维与应用,2006,31(6):5-10. HE F,LI R M.Application of carbon fiber in defence and military(1)[J].Hi-Tech Fiber & Application,2006,31(6):5-10.
[3] 杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12. DU S Y.Advanced composite materials and aerospace engineering[J].Acta Materiae Compositae Sinica,2007,24(1):1-12.
[4] CHEN J C,HARRISON I R.Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide (DMF)[J].Carbon,2002,40:25-45.
[5] REZARI F,YUNUS R,IBRAHIM N A.Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites[J].Materials and Design,2009,30:260-263.
[6] 徐樑华.高性能PAN基碳纤维国产化进展及发展趋势[J].中国材料进展,2012,31(10):7-13. XU L H.Development and trends of PAN-based high performance carbon fiber in China[J].Materials China,2012,31(10):7-13.
[7] 彭公秋,李国丽,曹正华,等.国产聚丙烯腈基碳纤维发展现状与建议[J].航空制造技术,2018,61(14):68-73. PENG G Q,LI G L,CAO Z H,et al.Development status and suggestion of domestic PAN-based carbon fiber[J]. Aeronautical Manufacturing Technology,2018,61(14):68-73.
[8] LUO H Y,ROY S,LU H B.Dynamic compressive behavior of unidirectional IM7/5250-4 laminate after thermal oxidation[J].Composites Science and Technology,2012,72:159-166.
[9] 钱鑫,王雪飞,郑凯杰,等.PAN基高模量碳纤维成型过程中的结构性能关联性[J].化工进展,2019,38(5):2276-2283. QIAN X,WANG X F,ZHENG K J,et al.Relationship between micro-structure and macro-properties during the formation of PAN-based high modulus carbon fibers[J].Chemical Industry and Engineering Progress,2019,38(5):2276-2283.
[10] 徐永新,顾轶卓,马全胜,等.几种国产高模碳纤维特性实验分析[J].复合材料学报,2016,33(9):1905-1914. XU Y X,GU Y Z,MA Q S,et al.Experimental analysis of properties of several domestic high-modulus carbon fibers[J].Acta Materiae Compositae Sinica,2016,33(9):1905-1914.
[11] 李国丽,彭公秋,王迎芬,等.国产T700级碳纤维增强双马树脂基复合材料的力学性能研究[J].航空材料学报,2017,37(2):63-72. LI G L,PENG G Q,WANG Y F,et al.Mechanical properties of domestic T700 grade carbon fibers/QY9611 BMI matrix composites[J].Journal of Aeronautical Materials.2017,37(2):63-72.
[12] CHU C X,GE H Y,GU N L,et al.Interfacial microstructure and mechanical properties of carbon fiber composite modified with carbon dots[J].Composites Science and Technology,2019,184:1-8.
[13] YAO L R,LI M,WU Q,et al.Comparison of sizing effect of T700 grade carbon fiber on interfacial properties of fiber/BMI and fiber/epoxy[J].Applied Surface Science,2012,263:326-333.
[14] 张世杰,王汝敏,刘宁,等.纺丝工艺对T800碳纤维及其复合材料性能的影响[J].材料工程,2019,47(8):118-124. ZHANG S J,WANG R M,LIU N,et al.Effect of spinning process on the properties of T800 carbon fiber and its reinforced composite[J].Journal of Materials Engineering.2019,47(8):118-124.
[15] 彭公秋,杨进军,曹正华,等.T700S/QY8911复合材料界面匹配研究[J].航空材料学报,2011,31(2):43-48. PENG G Q,YANG J J,CAO Z H,et al.Study on interface compatibility of T700S/QY8911 composite[J].Journal of Aeronautical Materials,2011,31(2):43-48.
[16] DILSIZ N,WEIGHTMAN JP.Surface analysis of unsized and sized carbon fibers[J].Carbon,1999,37:1105-1114.
[17] 贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010:75-76. HE F.Carbon fibre and graphite fibre[M].Beijing:Chemical Industry Press,2010:75-76.
[18] 陈淙洁,张明,王春红,等.四种碳纤维表面理化特性研究[J].玻璃钢/复合材料,2012(增刊1):73-80. CHEN C J,ZHANG M,WANG C H,et al.Study on surface physicochemical properties of four types of carbon fibers[J].Fiber Reinforced Plastics/Composites,2012(Suppl 1):73-80.
[19] DAI Z S,SHI F H,ZHANG B Y.Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J].Applied Surface Science,2001,257:6980-6985.
[20] 石峰晖,代志双,张宝艳.碳纤维表面性质分析及其对复合材料界面性能的影响[J].航空材料学报,2010,30(3):43-47. SHI F H,DAI Z S,ZHANG B Y.Properties of carbon fibers and interfacial properties of carbon fibers reinforced matrix composite[J].Journal of Aeronautical Materials,2010,30(3):43-47.
[21] 王迎芬,谢富原,彭公秋,等.国产T700级碳纤维表面特性对BMI复合材料湿热性能的影响[J].航空制造技术,2014(3):90-94. WANG Y F,XIE M Y,PENG Gong-qiu,et al.Effect of surface properties of domestic T700 grade carbon fiber on hygrothermal performance of BMI composites[J].Aeronautical Manufacturing Technology,2014(3):90-94.
[22] LI Y M,MIRANDA J,SUE H J.Hygrothermal diffusion behavior in bismaleimide resin[J].Polymer,2001,42(18):7791-7799.
[23] 隋晓东,熊舒,朱亮,等.国产T800级碳纤维/环氧树脂复合材料湿热性能[J].航空材料学报,2019,39(3):88-93. SUI X D,XIONG S,ZHU L,et al.Hygrothermal properties of domestic T800 carbon/epoxy composites[J].Journal of Aeronautical Materials,2019,39(3):88-93.
[24] 李敏,张宝艳.改性双马树脂/碳纤维复合材料体系耐湿热性能研究[J].热固性树脂,2006,21(5):25-27. LI M,ZHANG B Y.Study on the hydrothermal properties of a modified bismaleimide resin/carbon fiber composite[J].Thermosetting Resin,2006,21(5):25-27.
[25] SELZER R,FRIEDRICH K.Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture[J].Composites:Part A,1997,28(6):595-604.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[3] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[4] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[5] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[6] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[7] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[8] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[9] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[10] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[11] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[12] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[13] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[14] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[15] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn