1 National Power Battery Innovation Center, GRINM Group Corporation Limited, Beijing 100088, China 2 China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China 3 General Research Institute for Nonferrous Metals, Beijing 100088, China
Silicon has been a pivotal material for the next generation lithium-ion batteries, owing to its superior theoretical capacity (4200 mAh·g-1). However, the huge volume change of silicon during the process of lithiation/delithiation will lead to the instability of silicon-based anode. As a main composition of electrode, the binder plays a critical role in connecting the electrode components together and maintaining the stability of electrode, the use of an appropriate binder is essential to improve the cycling stability of silicon-based anode. Water-soluble binders which have abundant functional groups have received extensive attention due to their excellent performance in improving the electrochemical performance of silicon-based anodes. In this paper, the research progress of water-soluble binders used in silicon-based anode was reviewed. First, the properties of one-dimensional linear binders were summarized. On this basis, the research progress of composite binders with three-dimensional (3D) network structure was mainly introduced. The structure and properties of different 3D network binders were systematically analyzed. Finally, the preferred structure and properties of the water-soluble binders for silicon-based anode were proposed, and a train of thought for water-soluble binders' choice and design was provided.
LU Y , ZHANG Q , CHEN J . Recent progress on lithium-ion batteries with high electrochemical performance[J]. Science China (Chemistry), 2019, 62 (5): 19- 34.
MA H , LIU L , SU J , et al. Research progress on Tin-based anode materials for lithium ion batteries[J]. Journal of Materials Engineering, 2017, 45 (6): 138- 146.
3
FENG K , LI M , LIU W , et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications[J]. Small, 2018, 14 (8): 1702737.
doi: 10.1002/smll.201702737
4
PELED E , MENKIN S . Review—SEI: past, present and future[J]. Journal of the Electrochemical Society, 2017, 164 (7): A1703- A1719.
doi: 10.1149/2.1441707jes
CHANG Z H , WANG J T , LI W J , et al. Research progress on interface reaction of silicon-based anode for lithium-ion battery[J]. Journal of Materials Engineering, 2019, 47 (2): 11- 25.
6
ZHANG J , FANG S , QI X , et al. Preparation of high-purity straight silicon nanowires by molten salt electrolysis[J]. Journal of Energy Chemistry, 2020, 40, 171- 179.
doi: 10.1016/j.jechem.2019.04.014
7
MA T , XU H , YU X , et al. Lithiation behavior of coaxial hollow nanocables of carbon-silicon composite[J]. ACS Nano, 2019, 13 (2): 2274- 2280.
8
TAO Y , ZENG G F , XIAO C Y , et al. Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2019, 554, 674- 681.
doi: 10.1016/j.jcis.2019.07.043
WU S J , YANG J Y , YU B , et al. Nano/micro structured silicon-based negative materials[J]. Progress in Chemistry, 2018, 30 (2/3): 272- 285.
10
LIU M J , GAO H Y , HU G X , et al. Facile preparation of core-shell Si@Li4Ti5O12 nanocomposite as large-capacity lithium-ion battery anode[J]. Journal of Energy Chemistry, 2020, 40, 89- 98.
doi: 10.1016/j.jechem.2019.02.011
11
ZHU X Q , SHEN J L , CHEN X F , et al. Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries[J]. Chemical Engineering Journal, 2019, 378 (15): 122212.
HUANG X K , SHAO Z C , CHANG Z H , et al. Effect of conductive carbon black on electrochemical performance of Li- and Mn-rich layered oxide electrode[J]. Journal of Materials Engineering, 2019, 47 (8): 13- 21.
WU Z H , YANG J Y , YAN K , et al. Advances in polymeric binder for silicon-based anode of lithium-ion batteries[J]. Chinese Journal of Rare Metals, 2016, 40, 838- 849.
14
KWON T W , CHOI J W , COSKUN A . The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews, 2018, 47 (6): 2145- 2164.
doi: 10.1039/C7CS00858A
WANG X Y , ZHANG Y , MA L , et al. Recent development on binders for silicon-based anodes in lithium-ion batteries[J]. Acta Chimica Sinica, 2019, 77 (1): 24- 40.
16
LI J T , WU Z Y , LU Y Q , et al. Watersoluble binder, an electrochemical performance booster for electrode materials with high energy density[J]. Advanced Energy Materials, 2017, 7 (24): 1701185.
doi: 10.1002/aenm.201701185
17
DROFENIK J , GABERSCEK M , DOMINKO R , et al. Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study[J]. Electrochimica Acta, 2003, 48 (7): 883- 889.
doi: 10.1016/S0013-4686(02)00784-3
18
BRIDEL J S , AZAIÏS T , MORCRETTE M , et al. Key parameters governing the reversibility of Si/Carbon/CMC electrodes for Li-ion batteries?[J]. Chemistry of Materials, 2010, 22 (3): 1229- 1241.
doi: 10.1021/cm902688w
19
MUNAO D , ERVEN J W M V , VALVO M , et al. Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries[J]. Journal of Power Sources, 2011, 196 (16): 6695- 6702.
doi: 10.1016/j.jpowsour.2010.11.072
20
VOGL U S , DAS P K , WEBER A Z , et al. Mechanism of interactions between CMC binder and Si single crystal facets[J]. Langmuir, 2014, 30 (34): 10299- 10307.
doi: 10.1021/la501791q
21
HOCHGATTERER N S , SCHWEIGER M R , KOLLER S , et al. Silicon/graphite composite electrodes for high-capacity anodes influence of binder chemistry on cycling stability[J]. Electrochemical and Solid-State Letters, 2008, 11 (5): A76- A80.
doi: 10.1149/1.2888173
22
MAGASINSKI A , ZDYRKO B , KOVALENKO I , et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid[J]. ACS Applied Materials & Interfaces, 2010, 2 (11): 3004- 3010.
23
KOMABA S , SHIMOMURA K , YABUUCHI N , et al. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115 (27): 13487- 13495.
doi: 10.1021/jp201691g
24
KOMABA S , YABUUCHI N , OZEKI T , et al. Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 116 (1): 1380- 1389.
25
YABUUCHI N , SHIMOMURA K , SHIMBE Y , et al. Graphite-silicon-polyacrylate negative electrodes in ionic liquid electrolyte for safer rechargeable Li-ion batteries[J]. Advanced Energy Materials, 2011, 1 (5): 759- 765.
doi: 10.1002/aenm.201100236
26
HAN Z J , YABUUCHI N , SHIMOMURA K , et al. High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5 (10): 9014- 9020.
27
HAN Z J , YAMAGIWA K , YABUUCHI N , et al. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders[J]. Physical Chemistry Chemical Physics, 2015, 17 (5): 3783- 3795.
doi: 10.1039/C4CP04939J
28
PARK H K , KONG B S , OH E S . Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries[J]. Electrochemistry Communications, 2011, 13 (10): 1051- 1053.
doi: 10.1016/j.elecom.2011.06.034
29
LUO L , XU Y , ZHANG H , et al. Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-Si anodes[J]. ACS Applied Materials & Interfaces, 2016, 8 (12): 8154- 8161.
30
MIRANDA A , LI X , HAREGEWOIN A M , et al. A comprehensive study of hydrolyzed polyacrylamide as a binder for silicon anodes[J]. ACS Applied Materials & Interfaces, 2019, 11 (47): 44090- 44100.
31
KOVALENKO I , ZDYRKO B , MAGASINSKI A , et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334 (6052): 75- 79.
doi: 10.1126/science.1209150
32
RYOU M H , KIM J , LEE I , et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries[J]. Advanced Materials, 2013, 25 (11): 1571- 1576.
doi: 10.1002/adma.201203981
33
YUE L , ZHANG L , ZHONG H . Carboxymethyl chitosan: a new water-soluble binder for Si anode of Li-ion batteries[J]. Journal of Power Sources, 2014, 247, 327- 331.
doi: 10.1016/j.jpowsour.2013.08.073
34
LIU J , ZHANG Q , ZHANG T , et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries[J]. Advanced Functional Materials, 2015, 25 (23): 3599- 3605.
doi: 10.1002/adfm.201500589
35
YOON D E , HWANG C , KANG N R , et al. Dependency of electrochemical performances of silicon lithium-ion batteries on glycosidic linkages of polysaccharide binders[J]. ACS Applied Materials & Interfaces, 2016, 8 (6): 4042- 4047.
36
HU S , CAI Z , HUANG T , et al. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (4): 4311- 4317.
37
BIE Y , YANG J , NULI Y , et al. Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5 (5): 1919- 1924.
doi: 10.1039/C6TA09522D
38
KOO B , KIM H , CHO Y , et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie International Edition, 2012, 51 (35): 8762- 8767.
doi: 10.1002/anie.201201568
39
SONG J , ZHOU M , YI R , et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24 (37): 5904- 5910.
doi: 10.1002/adfm.201401269
40
HWANG C , JOO S , KANG N R , et al. Breathing silicon anodes for durable high-power operations[J]. Scientific Reports, 2015, 5, 14433.
doi: 10.1038/srep14433
41
LING M , ZHAO H , XIAOC X , et al. Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3 (5): 2036- 2042.
doi: 10.1039/C4TA05817H
42
ZHU L , DU F , ZHUANG Y , et al. Effect of crosslinking binders on Li-storage behavior of silicon particles as anodes for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 845, 22- 30.
doi: 10.1016/j.jelechem.2019.05.019
43
ZHAO X , YIM C H , DU N , et al. Crosslinked chitosan networks as binders for silicon/graphite composite electrodes in Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165 (5): A1110- A1121.
doi: 10.1149/2.114805jes
44
PARK Y , LEE S , KIM S H , et al. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries[J]. RSC Advances, 2013, 3 (31): 12625- 12630.
doi: 10.1039/c3ra42447b
45
CHEN C , LEE S H , CHO M , et al. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8 (4): 2658- 2665.
46
LIM S , CHU H , LEE K , et al. Physically cross-linked polymer binder induced by reversible acid-base interaction for high-performance silicon composite anodes[J]. ACS Applied Materials & Interfaces, 2015, 7 (42): 23545- 23553.
47
LIM S , LEE K , SHIN I , et al. Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conductingpoly(ethyleneglycol-co-benzimidazole) for silicon anodes[J]. Journal of Power Sources, 2017, 360, 585- 592.
doi: 10.1016/j.jpowsour.2017.06.049
48
WU Z H , YANG J Y , YU B , et al. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries[J]. Rare Metals, 2016, 38 (9): 832- 839.
49
LIU J , ZHANG Q , WU Z Y , et al. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery[J]. Chemical Communications, 2014, 50 (48): 6386- 6389.
doi: 10.1039/c4cc00081a
50
WU Z Y , DENG L , LI J T , et al. Multiple hydrogel alginate binders for Si anodes of lithium-ion battery[J]. Electrochimica Acta, 2017, 245, 371- 378.
doi: 10.1016/j.electacta.2017.05.094
51
GU Y , YANG S , ZHU G , et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder[J]. Electrochimica Acta, 2018, 269, 405- 414.
doi: 10.1016/j.electacta.2018.02.168
52
KWON T W , JEONG Y K , Deniz E , et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium-ion batteries[J]. ACS Nano, 2015, 9 (11): 11317- 11324.
doi: 10.1021/acsnano.5b05030
53
ZHANG G Z , YANG Y U , CHEN Y H , et al. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries[J]. Small, 2018, 29 (14): 1801189.
54
WANG Y , DANG D , LI D , et al. Effects of polymeric binders on the cracking behavior of silicon composite electrodes during electrochemical cycling[J]. Journal of Power Sources, 2019, 438, 226938.
doi: 10.1016/j.jpowsour.2019.226938
55
LEE S H , LEE J H , NAM D H , et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery[J]. ACS Appl Mater Interfaces, 2018, 10 (19): 16449- 16457.
doi: 10.1021/acsami.8b01614
56
LIU T , CHU Q , YAN C , et al. Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers[J]. Advanced Energy Materials, 2019, 9 (3): 1802645.
doi: 10.1002/aenm.201802645
57
ZHU X , ZHANG F , ZHANG L , et al. A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage[J]. Advanced Functional Materials, 2018, 28 (11): 1705015.
doi: 10.1002/adfm.201705015
58
CHOI S , KWON T W , COSKUN A , et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357 (6348): 279- 283.
doi: 10.1126/science.aal4373
59
CHO Y , KIM J , ELABD A , et al. A pyrene-poly(acrylicacid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes[J]. Advanced Materials, 2019, 31 (51): 1905048.
doi: 10.1002/adma.201905048