Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (6): 44-54    DOI: 10.11868/j.issn.1001-4381.2019.001112
  综述 本期目录 | 过刊浏览 | 高级检索 |
锂离子电池用三维网状水系黏结剂的研究进展
张健华1,2,3, 张伟1,2,3, 余章龙1,2, 史碧梦1,2, 杨娟玉1,2,3,*()
1 有研科技集团有限公司 国家动力电池创新中心, 北京 100088
2 国联汽车动力电池研究院有限责任公司, 北京 100088
3 北京有色金属研究总院, 北京 100088
Research progress in 3D network structured water-soluble binders for lithium-ion batteries
Jian-hua ZHANG1,2,3, Wei ZHANG1,2,3, Zhang-long YU1,2, Bi-meng SHI1,2, Juan-yu YANG1,2,3,*()
1 National Power Battery Innovation Center, GRINM Group Corporation Limited, Beijing 100088, China
2 China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
全文: PDF(8055 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

硅材料由于具有很高的理论比容量(4200 mAh·g-1)而成为下一代锂离子电池的关键负极材料之一,但是其在嵌/脱锂过程中会产生巨大的体积变化,使电极的循环性能变差。黏结剂作为电极的主要成分之一承担着连接电极组分、维持电极结构稳定的重要作用,使用合适的黏结剂对于改善硅基负极的循环稳定性至关重要。带有极性官能团的水系黏结剂由于可以有效改善硅基负极的电化学性能而成为现在的研究热点。本文综述硅基负极水系黏结剂的研究进展,首先对单一线性结构黏结剂的性质进行归纳总结。在此基础上,对具有三维网状结构的复合黏结剂的研究进展进行重点介绍,详细讨论不同类型三维网状黏结剂的结构和性能特点,以及应用于硅基负极时对电极性能的改善效果。最后,提出硅基负极水系黏结剂所应具备的特性,旨在为硅基负极水系黏结剂的开发和选择提供思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张健华
张伟
余章龙
史碧梦
杨娟玉
关键词 锂离子电池硅基负极水系黏结剂三维网状黏结剂    
Abstract

Silicon has been a pivotal material for the next generation lithium-ion batteries, owing to its superior theoretical capacity (4200 mAh·g-1). However, the huge volume change of silicon during the process of lithiation/delithiation will lead to the instability of silicon-based anode. As a main composition of electrode, the binder plays a critical role in connecting the electrode components together and maintaining the stability of electrode, the use of an appropriate binder is essential to improve the cycling stability of silicon-based anode. Water-soluble binders which have abundant functional groups have received extensive attention due to their excellent performance in improving the electrochemical performance of silicon-based anodes. In this paper, the research progress of water-soluble binders used in silicon-based anode was reviewed. First, the properties of one-dimensional linear binders were summarized. On this basis, the research progress of composite binders with three-dimensional (3D) network structure was mainly introduced. The structure and properties of different 3D network binders were systematically analyzed. Finally, the preferred structure and properties of the water-soluble binders for silicon-based anode were proposed, and a train of thought for water-soluble binders' choice and design was provided.

Key wordslithium-ion battery    silicon-based anode    water-soluble binder    3D network binder
收稿日期: 2019-12-02      出版日期: 2021-06-22
中图分类号:  TM911  
基金资助:国家重点研发计划项目(2016YFB0100400);国家自然科学基金项目(51604032);北京市优秀人才培养资助项目(2017000097607G094)
通讯作者: 杨娟玉     E-mail: juanyuyang@163.com
作者简介: 杨娟玉(1975-), 女, 教授, 博士, 主要从事锂离子电池负极材料制备技术及其在锂离子电池中的应用研究, 联系地址: 北京市西城区新街口外大街2号北京有色金属研究总院(100088), E-mail: juanyuyang@163.com
引用本文:   
张健华, 张伟, 余章龙, 史碧梦, 杨娟玉. 锂离子电池用三维网状水系黏结剂的研究进展[J]. 材料工程, 2021, 49(6): 44-54.
Jian-hua ZHANG, Wei ZHANG, Zhang-long YU, Bi-meng SHI, Juan-yu YANG. Research progress in 3D network structured water-soluble binders for lithium-ion batteries. Journal of Materials Engineering, 2021, 49(6): 44-54.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001112      或      http://jme.biam.ac.cn/CN/Y2021/V49/I6/44
Fig.1  CMC黏结剂[20]
(a)CMC与硅颗粒之间的氢键作用示意图;(b)CMC黏结剂在硅电极充放电过程中的作用机理示意图
Fig.2  溶解在水中的PAH,PAH0.2Na0.8和PAANa的聚合物链构象示意图[27]
Binder Functional group Active material Initial specific capacity/ (mAh·g-1) Capacity retention ratio/cycle number Reference
CMC —OH,—COONa SiNPs 4000 25%/100th [18]
PAA —COOH SiNPs 3500 57% /100th [22]
Alg —OH,—COONa SiNPs 2000 85%/100th [31]
C-CS —OH,—COOH,—NH2 SiNPs 1990 48%/50th [33]
GG —OH SiNPs 3364 66% /100th [34]
Table 1  不同线性黏结剂的官能团类型和性能表现
Fig.3  PAA-PVA黏结剂的结构以及与硅颗粒相互作用示意图[39]
Fig.4  PVDF和Alg-C-CS黏结剂的作用机理示意图[48]
Fig.5  β-CDp和6AD动态交联黏结剂的作用机理及金刚烷客体分子的化学结构示意图[52]
Fig.6  PR-PAA黏结剂[58]
(a)分子结构示意图;(b)PR-PAA黏结剂消除SiMP反复体积变化过程中的应力示意图;(c)PR-PAA-SiMP电极的放电容量保持率和库仑效率
Characteristic Binder Active material Initial specific capacity/ (mAh·g-1) Capacity retention ratio/cycle number Reference
In situ covalent c-PAA-CMC SiNPs 3063 70%/100th [38]
crosslinking PAA-PVA SiNPs 3616 63%/100th [39]
PAA-BP Si/C 1600 75%/100th [44]
CS-GA SiNPs 2709 71%/100th [45]
Noncovalent/dynamic PAA-PEGPBI SiNPs 2000 61% /50th [47]
crosslinking Alg-C-CS Si/Gr@C 752 61%/160th [48]
Ca2+-Alg Si/C 2214 82%/120th [49]
Al3+-Alg SiNPs 3462 62%/300th [50]
β-CDp-6AD SiNPs 1600 90%/150th [52]
PAA-UPy SiNPs 4194 62.9%/110th [53]
High tenacity CS-ENR SiNPs 3500 67% /500th [55]
3D structure PFA-PVA SiNPs 1.9(mAh·cm-2) 73.7%/300th [56]
c-PAM SiNPs 3160 90%/100th [57]
PR-PAA SiMPs 2.68(mAh·cm-2) 85%/370th [58]
Py-c-SiOx 2.54(mAh·cm-2) 92.6%/250th [59]
Table 2  不同黏结剂的结构特点以及性能对比
Fig.7  高性能三维网状黏结剂在硅基负极中的作用机理
1 LU Y , ZHANG Q , CHEN J . Recent progress on lithium-ion batteries with high electrochemical performance[J]. Science China (Chemistry), 2019, 62 (5): 19- 34.
2 马昊, 刘磊, 苏杰, 等. 锂离子电池Sn基负极材料研究进展[J]. 材料工程, 2017, 45 (6): 138- 146.
2 MA H , LIU L , SU J , et al. Research progress on Tin-based anode materials for lithium ion batteries[J]. Journal of Materials Engineering, 2017, 45 (6): 138- 146.
3 FENG K , LI M , LIU W , et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications[J]. Small, 2018, 14 (8): 1702737.
doi: 10.1002/smll.201702737
4 PELED E , MENKIN S . Review—SEI: past, present and future[J]. Journal of the Electrochemical Society, 2017, 164 (7): A1703- A1719.
doi: 10.1149/2.1441707jes
5 常增花, 王建涛, 李文进, 等. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47 (2): 11- 25.
5 CHANG Z H , WANG J T , LI W J , et al. Research progress on interface reaction of silicon-based anode for lithium-ion battery[J]. Journal of Materials Engineering, 2019, 47 (2): 11- 25.
6 ZHANG J , FANG S , QI X , et al. Preparation of high-purity straight silicon nanowires by molten salt electrolysis[J]. Journal of Energy Chemistry, 2020, 40, 171- 179.
doi: 10.1016/j.jechem.2019.04.014
7 MA T , XU H , YU X , et al. Lithiation behavior of coaxial hollow nanocables of carbon-silicon composite[J]. ACS Nano, 2019, 13 (2): 2274- 2280.
8 TAO Y , ZENG G F , XIAO C Y , et al. Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2019, 554, 674- 681.
doi: 10.1016/j.jcis.2019.07.043
9 吴帅锦, 杨娟玉, 于冰, 等. 微/纳复合结构硅基负极材料[J]. 化学进展, 2018, 30 (2/3): 272- 285.
9 WU S J , YANG J Y , YU B , et al. Nano/micro structured silicon-based negative materials[J]. Progress in Chemistry, 2018, 30 (2/3): 272- 285.
10 LIU M J , GAO H Y , HU G X , et al. Facile preparation of core-shell Si@Li4Ti5O12 nanocomposite as large-capacity lithium-ion battery anode[J]. Journal of Energy Chemistry, 2020, 40, 89- 98.
doi: 10.1016/j.jechem.2019.02.011
11 ZHU X Q , SHEN J L , CHEN X F , et al. Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries[J]. Chemical Engineering Journal, 2019, 378 (15): 122212.
12 黄贤凯, 邵泽超, 常增花, 等. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47 (8): 13- 21.
12 HUANG X K , SHAO Z C , CHANG Z H , et al. Effect of conductive carbon black on electrochemical performance of Li- and Mn-rich layered oxide electrode[J]. Journal of Materials Engineering, 2019, 47 (8): 13- 21.
13 武兆辉, 杨娟玉, 闫坤, 等. 锂离子电池硅基负极用聚合物粘结剂的研究进展[J]. 稀有金属, 2016, 40, 838- 849.
13 WU Z H , YANG J Y , YAN K , et al. Advances in polymeric binder for silicon-based anode of lithium-ion batteries[J]. Chinese Journal of Rare Metals, 2016, 40, 838- 849.
14 KWON T W , CHOI J W , COSKUN A . The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews, 2018, 47 (6): 2145- 2164.
doi: 10.1039/C7CS00858A
15 王晓钰, 张渝, 马磊, 等. 锂离子电池硅基负极粘结剂发展现状[J]. 化学学报, 2019, 77 (1): 24- 40.
15 WANG X Y , ZHANG Y , MA L , et al. Recent development on binders for silicon-based anodes in lithium-ion batteries[J]. Acta Chimica Sinica, 2019, 77 (1): 24- 40.
16 LI J T , WU Z Y , LU Y Q , et al. Watersoluble binder, an electrochemical performance booster for electrode materials with high energy density[J]. Advanced Energy Materials, 2017, 7 (24): 1701185.
doi: 10.1002/aenm.201701185
17 DROFENIK J , GABERSCEK M , DOMINKO R , et al. Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study[J]. Electrochimica Acta, 2003, 48 (7): 883- 889.
doi: 10.1016/S0013-4686(02)00784-3
18 BRIDEL J S , AZAIÏS T , MORCRETTE M , et al. Key parameters governing the reversibility of Si/Carbon/CMC electrodes for Li-ion batteries?[J]. Chemistry of Materials, 2010, 22 (3): 1229- 1241.
doi: 10.1021/cm902688w
19 MUNAO D , ERVEN J W M V , VALVO M , et al. Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries[J]. Journal of Power Sources, 2011, 196 (16): 6695- 6702.
doi: 10.1016/j.jpowsour.2010.11.072
20 VOGL U S , DAS P K , WEBER A Z , et al. Mechanism of interactions between CMC binder and Si single crystal facets[J]. Langmuir, 2014, 30 (34): 10299- 10307.
doi: 10.1021/la501791q
21 HOCHGATTERER N S , SCHWEIGER M R , KOLLER S , et al. Silicon/graphite composite electrodes for high-capacity anodes influence of binder chemistry on cycling stability[J]. Electrochemical and Solid-State Letters, 2008, 11 (5): A76- A80.
doi: 10.1149/1.2888173
22 MAGASINSKI A , ZDYRKO B , KOVALENKO I , et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid[J]. ACS Applied Materials & Interfaces, 2010, 2 (11): 3004- 3010.
23 KOMABA S , SHIMOMURA K , YABUUCHI N , et al. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115 (27): 13487- 13495.
doi: 10.1021/jp201691g
24 KOMABA S , YABUUCHI N , OZEKI T , et al. Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Si-graphite composite negative electrodes in Li-ion batteries[J]. The Journal of Physical Chemistry C, 2011, 116 (1): 1380- 1389.
25 YABUUCHI N , SHIMOMURA K , SHIMBE Y , et al. Graphite-silicon-polyacrylate negative electrodes in ionic liquid electrolyte for safer rechargeable Li-ion batteries[J]. Advanced Energy Materials, 2011, 1 (5): 759- 765.
doi: 10.1002/aenm.201100236
26 HAN Z J , YABUUCHI N , SHIMOMURA K , et al. High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5 (10): 9014- 9020.
27 HAN Z J , YAMAGIWA K , YABUUCHI N , et al. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders[J]. Physical Chemistry Chemical Physics, 2015, 17 (5): 3783- 3795.
doi: 10.1039/C4CP04939J
28 PARK H K , KONG B S , OH E S . Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries[J]. Electrochemistry Communications, 2011, 13 (10): 1051- 1053.
doi: 10.1016/j.elecom.2011.06.034
29 LUO L , XU Y , ZHANG H , et al. Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-Si anodes[J]. ACS Applied Materials & Interfaces, 2016, 8 (12): 8154- 8161.
30 MIRANDA A , LI X , HAREGEWOIN A M , et al. A comprehensive study of hydrolyzed polyacrylamide as a binder for silicon anodes[J]. ACS Applied Materials & Interfaces, 2019, 11 (47): 44090- 44100.
31 KOVALENKO I , ZDYRKO B , MAGASINSKI A , et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334 (6052): 75- 79.
doi: 10.1126/science.1209150
32 RYOU M H , KIM J , LEE I , et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries[J]. Advanced Materials, 2013, 25 (11): 1571- 1576.
doi: 10.1002/adma.201203981
33 YUE L , ZHANG L , ZHONG H . Carboxymethyl chitosan: a new water-soluble binder for Si anode of Li-ion batteries[J]. Journal of Power Sources, 2014, 247, 327- 331.
doi: 10.1016/j.jpowsour.2013.08.073
34 LIU J , ZHANG Q , ZHANG T , et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries[J]. Advanced Functional Materials, 2015, 25 (23): 3599- 3605.
doi: 10.1002/adfm.201500589
35 YOON D E , HWANG C , KANG N R , et al. Dependency of electrochemical performances of silicon lithium-ion batteries on glycosidic linkages of polysaccharide binders[J]. ACS Applied Materials & Interfaces, 2016, 8 (6): 4042- 4047.
36 HU S , CAI Z , HUANG T , et al. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (4): 4311- 4317.
37 BIE Y , YANG J , NULI Y , et al. Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5 (5): 1919- 1924.
doi: 10.1039/C6TA09522D
38 KOO B , KIM H , CHO Y , et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie International Edition, 2012, 51 (35): 8762- 8767.
doi: 10.1002/anie.201201568
39 SONG J , ZHOU M , YI R , et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24 (37): 5904- 5910.
doi: 10.1002/adfm.201401269
40 HWANG C , JOO S , KANG N R , et al. Breathing silicon anodes for durable high-power operations[J]. Scientific Reports, 2015, 5, 14433.
doi: 10.1038/srep14433
41 LING M , ZHAO H , XIAOC X , et al. Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3 (5): 2036- 2042.
doi: 10.1039/C4TA05817H
42 ZHU L , DU F , ZHUANG Y , et al. Effect of crosslinking binders on Li-storage behavior of silicon particles as anodes for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 845, 22- 30.
doi: 10.1016/j.jelechem.2019.05.019
43 ZHAO X , YIM C H , DU N , et al. Crosslinked chitosan networks as binders for silicon/graphite composite electrodes in Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165 (5): A1110- A1121.
doi: 10.1149/2.114805jes
44 PARK Y , LEE S , KIM S H , et al. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries[J]. RSC Advances, 2013, 3 (31): 12625- 12630.
doi: 10.1039/c3ra42447b
45 CHEN C , LEE S H , CHO M , et al. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8 (4): 2658- 2665.
46 LIM S , CHU H , LEE K , et al. Physically cross-linked polymer binder induced by reversible acid-base interaction for high-performance silicon composite anodes[J]. ACS Applied Materials & Interfaces, 2015, 7 (42): 23545- 23553.
47 LIM S , LEE K , SHIN I , et al. Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conductingpoly(ethyleneglycol-co-benzimidazole) for silicon anodes[J]. Journal of Power Sources, 2017, 360, 585- 592.
doi: 10.1016/j.jpowsour.2017.06.049
48 WU Z H , YANG J Y , YU B , et al. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries[J]. Rare Metals, 2016, 38 (9): 832- 839.
49 LIU J , ZHANG Q , WU Z Y , et al. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery[J]. Chemical Communications, 2014, 50 (48): 6386- 6389.
doi: 10.1039/c4cc00081a
50 WU Z Y , DENG L , LI J T , et al. Multiple hydrogel alginate binders for Si anodes of lithium-ion battery[J]. Electrochimica Acta, 2017, 245, 371- 378.
doi: 10.1016/j.electacta.2017.05.094
51 GU Y , YANG S , ZHU G , et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder[J]. Electrochimica Acta, 2018, 269, 405- 414.
doi: 10.1016/j.electacta.2018.02.168
52 KWON T W , JEONG Y K , Deniz E , et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium-ion batteries[J]. ACS Nano, 2015, 9 (11): 11317- 11324.
doi: 10.1021/acsnano.5b05030
53 ZHANG G Z , YANG Y U , CHEN Y H , et al. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries[J]. Small, 2018, 29 (14): 1801189.
54 WANG Y , DANG D , LI D , et al. Effects of polymeric binders on the cracking behavior of silicon composite electrodes during electrochemical cycling[J]. Journal of Power Sources, 2019, 438, 226938.
doi: 10.1016/j.jpowsour.2019.226938
55 LEE S H , LEE J H , NAM D H , et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery[J]. ACS Appl Mater Interfaces, 2018, 10 (19): 16449- 16457.
doi: 10.1021/acsami.8b01614
56 LIU T , CHU Q , YAN C , et al. Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers[J]. Advanced Energy Materials, 2019, 9 (3): 1802645.
doi: 10.1002/aenm.201802645
57 ZHU X , ZHANG F , ZHANG L , et al. A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage[J]. Advanced Functional Materials, 2018, 28 (11): 1705015.
doi: 10.1002/adfm.201705015
58 CHOI S , KWON T W , COSKUN A , et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357 (6348): 279- 283.
doi: 10.1126/science.aal4373
59 CHO Y , KIM J , ELABD A , et al. A pyrene-poly(acrylicacid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes[J]. Advanced Materials, 2019, 31 (51): 1905048.
doi: 10.1002/adma.201905048
[1] 韩富娟, 常增花, 赵金玲, 王仁念, 丁海洋, 卢世刚. 高镍三元锂离子电池低温放电性能研究进展[J]. 材料工程, 2022, 50(9): 1-17.
[2] 史晓岩, 马磊磊, 常增花, 王建涛. 化成制度对富锂锰基/硅碳体系电池产气及电化学性能影响[J]. 材料工程, 2022, 50(5): 112-121.
[3] 何仁杰, 李书萍, 王许敏, 余创, 程时杰, 谢佳. 锂离子电池厚电极结构设计的研究进展[J]. 材料工程, 2022, 50(10): 38-54.
[4] 汪晨阳, 张安邦, 常增花, 吴帅锦, 刘智, 庞静. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79.
[5] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[6] 杨夕馨, 常增花, 邵泽超, 吴帅锦, 王仁念, 王建涛, 卢世刚. 富锂锰基正极材料在不同温度下的极化行为[J]. 材料工程, 2021, 49(9): 69-78.
[7] 欧阳丽霞, 武兆辉, 王建涛. 锂离子电池浆料的制备技术及其影响因素[J]. 材料工程, 2021, 49(7): 21-34.
[8] 胡秀英, 毛冲冲, 贺畅, 曹志翔, 丁一鸣, 鲍克燕. 聚席夫碱/碳纳米管复合材料的制备及储锂性能[J]. 材料工程, 2021, 49(12): 139-146.
[9] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[10] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[11] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[12] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[13] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[14] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[15] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn