Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 13-23    DOI: 10.11868/j.issn.1001-4381.2019.001156
  综述 本期目录 | 过刊浏览 | 高级检索 |
高性能梯度功能材料激光增材制造研究现状及展望
崔雪1, 张松1, 张春华1, 吴臣亮1, 王强1, 董世运2
1. 沈阳工业大学 材料科学与工程学院, 沈阳 110870;
2. 陆军装甲兵学院 装备再制造技术国防科技重点实验室, 北京 100072
Research status and prospect of laser additive manufacturing technology for high performance gradient functional materials
CUI Xue1, ZHANG Song1, ZHANG Chun-hua1, WU Chen-liang1, WANG Qiang1, DONG Shi-yun2
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
2. National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
全文: PDF(1343 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在高性能梯度功能材料的制造方法中,激光增材制造技术可通过精确控制两种或多种材料粉末的输送和相应的工艺来实现材料组织和性能的梯度分布,为高性能梯度功能材料的制备提供一种更为便捷高效的新途径。本文介绍了高性能梯度功能材料激光增材制造的基本原理及分类,总结了国内外采用激光增材制造技术制备高性能梯度功能材料方面的研究进展,提出了该研究领域在材料选择、工艺优化、过程监控等方面的不足,并对其以后的研究方向,如建立标准体系、深入理论研究及研制新型制造系统等进行展望,为高性能梯度功能材料激光增材制造提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔雪
张松
张春华
吴臣亮
王强
董世运
关键词 高性能梯度功能材料激光增材制造研究现状发展方向    
Abstract:Among the manufacturing methods of high performance gradient functional materials, laser additive manufacturing technology can achieve the materials with gradient microstructure and property through precisely controlling the powder feeding and corresponding process adjustment, providing a new way to prepare high performance gradient functional materials more conveniently and efficiently. The basic principles and classification of laser additive manufacturing technology for high performance gradient functional materials were introduced in this paper, and the research progress in manufacturing high performance gradient functional materials by laser additive manufacturing technology at home and abroad was summarized. Furthermore, the shortcomings of this research field in material selection, process optimization and process monitoring were proposed, and its future research directions, such as the establishment of standard systems, in-depth theoretical research and the development of new manufacturing systems, were prospected, which provide guidance for the research of laser additive manufacturing technology for high performance gradient functional materials.
Key wordshigh performance gradient functional material    laser additive manufacturing    research sta-tus    development trend
收稿日期: 2019-12-10      出版日期: 2020-09-17
中图分类号:  TB383  
通讯作者: 张松(1963-),女,教授,博士生导师,研究方向:激光先进制造技术,联系地址:辽宁省沈阳市沈阳经济技术开发区沈辽西路111号沈阳工业大学中央校区材料科学与工程学院(110870),E-mail:songzhang_sy@163.com;张春华(1963-),男,教授,博士生导师,研究方向:激光先进制造技术,联系地址:沈阳经济技术开发区沈辽西路111号沈阳工业大学中央校区材料科学与工程学院(110870),E-mail:zhangch5858@126.com     E-mail: songzhang_sy@163.com;zhangch5858@126.com
引用本文:   
崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
CUI Xue, ZHANG Song, ZHANG Chun-hua, WU Chen-liang, WANG Qiang, DONG Shi-yun. Research status and prospect of laser additive manufacturing technology for high performance gradient functional materials. Journal of Materials Engineering, 2020, 48(9): 13-23.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001156      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/13
[1] 卢秉恒. 西安交通大学先进制造技术研究进展[J].中国工程科学,2013,15(1):4-8. LU B H.Research progress of advanced manufacturing technology in Xi'an Jiaotong university[J].Engineering Sciences,2013,15(1):4-8.
[2] 陈勇,陈辉,姜亦帅,等.高性能金属材料激光增材制造应力变形调控研究现状[J].材料工程,2019,47(11):1-10. CHEN Y,CHEN H,JIANG Y S,et al.Research progress in stress and deformation control in laser additive manufacturing for high-performance metals[J].Journal of Materials Engineering,2019,47(11):1-10.
[3] 董世运,闫世兴,冯祥奕,等.激光增材制造钢粉体材料研究现状[J].激光与光电子学进展,2018,55(1):011407. DONG S Y,YAN S X,FENG X Y,et al.Research status of steel powder material for laser additive manufacturing[J].Laser & Optoelectronics Progress,2018,55(1):011407.
[4] KOCH J L,MAZUMDER J.Rapid prototyping by laser cladding[J].Proceedings of SPIE-the International Society for Optical Engineering,1994,2306:556.
[5] MURPHY M L,STEEN W M,LEE C.A novel rapid prototyping technique for the manufacture of metallic components[J].Proceedings of SPIE-the International Society for Optical Engineering,1994,2500:31.
[6] GRIFFITH M L,KEICHER D M,ATWOOD C L.Free form fabrication of metallic components using laser engineered net shaping (LENS)[C]//Texas,USA:Proceedings of Solid Free Form Fabrication Symposium,1996.
[7] ABBOTT D H,ARCELLA F G.Laser forming titanium components[J].Advanced Materials & Processes,1998,153(5):29-30.
[8] WU X,SHARMAN R,MEI J,et al.Direct laser fabrication and microstructure of a burn-resistant Ti alloy[J].Materials & Design,2002,23(3):239-247.
[9] XUE L,ISLAM M U.Free-form laser consolidation for producing metallurgically sound and functional components[J].Journal of Laser Applications,2000,12(4):160-165.
[10] 林鑫,黄卫东.应用于航空领域的金属高性能增材制造技术[J].中国材料进展,2015,34(9):684-688. LIN X,HUANG W D.High performance metal additive manufacturing technology applied in aviation field[J].Materials China,2015,34(9):684-688.
[11] CUI X, ZHANG S, WANG C, et al. Effects of stress-relief heat treatment on the microstructure and fatigue property of a laser additive manufactured 12CrNi2 low alloy steel[J]. Materials Science & Engineering:A,2020,791:139738.
[12] ZHANG H,ZHANG C H,WANG Q,et al.Effect of Ni content on stainless steel fabricated by laser melting deposition[J].Optics & Laser Technology,2018,101:363-371.
[13] 邢如飞,许星元,黄双君,等.激光沉积修复TA15钛合金微观组织及力学性能[J].材料工程,2018,46(12):144-150. XING R F,XU X Y,HUANG S J,et al.Microstructure and mechanical properties of laser deposition repaired TA15 titanium alloy[J].Journal of Materials Engineering,2018,46(12):144-150.
[14] 鹿旭飞,林鑫,马良,等.扫描路径对激光立体成形TC4构件热-力场的影响[J].材料工程,2019,47(12):55-62. LU X F,LIN X,MA L,et al.Effect of scanning path on thermo-mechanical field of laser solid forming TC4 part[J].Journal of Materials Engineering,2019,47(12):55-62.
[15] 孙志远,李艳琳.功能梯度材料的发展及其在内燃机上的应用[J].小型内燃机与车辆技术,2001,30(1):26-29. SUN Z Y,LI Y L.Development of functionally gradient materials and their application to internal combustion engines[J].Small Internal Combustion Engine,2001,30(1):26-29.
[16] KIEBACK B,NEUBRAND A,RIEDEL H.Processing techni-ques for functionally graded materials[J].Materials Science & Engineering:A,2003,362(1/2):81-106.
[17] 倪秀英,赵军,孙加林,等.梯度结构Al2O3-(W,Ti)C-TiN-Mo-Ni纳米金属陶瓷刀具材料的设计及制备[J].材料工程,2018,46(2):50-56. NI X Y,ZHAO J,SUN J L,et al.Design and fabrication of Al2O3-(W,Ti)C-TiN-Mo-Ni nano-composite cermet tool materials with graded structures[J].Journal of Materials Engineering,2018,46(2):50-56.
[18] 马涛,赵忠民,刘良祥,等.功能梯度材料的研究进展及应用前景[J].化工科技,2012,20(1):71-75. MA T,ZHAO Z M,LIU L X,et al.The research development and future application of functionally gradient materials[J].Science & Technology in Chemical Industry,2012,20(1):71-75.
[19] 牛犇.激光快速成形法制备Ni/TiC功能梯度材料的结构设计及优化[D].北京:北京理工大学,2015. NIU B.Structure optimized design of Ni/TiC functional gradient materials by laser rapid forming method[D].Beijing:Beijing Institute of Technology,2015.
[20] 卜恒勇,赵诚,卢晨.功能梯度材料的制备与应用进展[J].材料导报,2009,12(23):109-112. BU H Y,ZHAO C,LU C.Study on fabrication and application progress of functionally graded materials[J].Materials Review,2009,12(23):109-112.
[21] 李智慧,何小凤,李运刚.功能梯度材料的研究现状[J].华北理工大学学报,2007,29(1):45-50. LI Z H,HE X F,LI Y G.Current status of the research on functionally gradient materials[J].Journal of Hebei Polytechnic University,2007,29(1):45-50.
[22] 渠海刚,方建成,赵紫玉,等.等离子熔射制备功能梯度涂层及其应用进展[J].航空精密制造技术,2006,42(5):31-34. QU H G,FANG J C,ZHAO Z Y,et al.Fabrication and application of functionally graded materials by plasma spraying[J].Aviation Precision Manufacturing Technology,2006,42(5):31-34.
[23] 李耀天.梯度功能材料研究与应用[J].金属功能材料,2000,7(4):15-23. LI Y T.Study on functional graded material and its application[J].Metallic Functional Materials,2000,7(4):15-23.
[24] 邢世凯,李聚霞,吴立勋,等.金属-陶瓷梯度功能材料在内燃机上的应用研究[J].机械工程材料,2005,29(5):61-63. XING S K,LI J X,WU L X,et al.Application of metal-ceramic functionally gradient material to internal combustion engines[J].Materials for Mechanical Engineering,2005,29(5):61-63.
[25] 韩杰才,徐丽,王保林,等.梯度功能材料的研究进展及展望[J].固体火箭技术,2004,27(3):207-215. HAN J C,XU L,WANG B L,et al.Progress and prospects of functional gradient materials[J].Journal of Solid Rocket Technology,2004,27(3):207-215.
[26] ZHU J C,YIN Z D,LAI Z H.Fabrication and microstructure of ZrO2-Ni functional gradient material by powder metallurgy[J].Journal of Materials Science,1996,31(21):5829-5834.
[27] KHOR K A,DONG Z L,GU Y W.Plasma sprayed functionally graded thermal barrier coatings[J].Materials Letters,1999,38(6):437-444.
[28] KAWASE M,TAGO T,KUROSAWA M,et al.Chemical vapor infiltration and deposition to produce a silicon carbide-carbon functionally gradient material[J].Chemical Engineering Science,1999,54(15/16):3327-3334.
[29] YI H C,MOORE J J.Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials[J].Journal of Materials Science,1990,25(2):1159-1168.
[30] KAYA C.Al2O3-Y-TZP/Al2O3 functionally graded composites of tubular shape from nano-sols using double-step electrophoretic deposition[J].Journal of the European Ceramic Society,2003,23(10):1655-1660.
[31] GAO J W,WANG C Y.Modeling the solidification of functiona-lly graded materials by centrifugal casting[J].Materials Science & Engineering:A,2000,292(2):207-215.
[32] 李信,刘海昌,滕元成,等.功能梯度材料的研究现状及展望[J].材料导报,2012,26(19):370-373. LI X,LIU H C,TENG Y C,et al.Research status and future directions on functionally gradient materials[J].Materials Review,2012,26(19):370-373.
[33] 刘华炜,刘学武,张广文.功能梯度材料制备工艺及研究进展[J].机械设计与制造,2012,98(4):265-267. LIU H W,LIU X W,ZHANG G W.Research progress and preparing technology of functionally graded material[J].Machinery Design & Manufacture,2012,98(4):265-267.
[34] 彭谦,董世运,闫世兴,等.激光熔化沉积成形缺陷及其控制方法综述[J].材料导报,2018,32(8):2666-2671. PENG Q,DONG S Y,YAN S X,et al.An overview of defects in laser melting deposition forming products and the corresponding controlling methods[J].Materials Review,2018,32(8):2666-2671.
[35] 张松,吴臣亮,王冲,等.一种激光熔化沉积不锈钢基复合材料所用粉料及制备方法:ZL201810029170.0[P].2019-11-06. ZHANG S,WU C L,WANG C,et al.Powder used for laser melting and depositing stainless steel-based composite material and preparation method:ZL201810029170.0[P].2019-11-06.
[36] 杨强,鲁中良,黄福享,等.激光增材制造技术的研究现状及发展趋势[J].航空制造技术,2016,26(12):26-31. YANG Q,LU Z L,HUANG F X,et al.Research on status and development trend of laser additive manufacturing[J].Aeronautical Manufacturing Technology,2016,26(12):26-31.
[37] WU C L,ZHANG S,ZHANG C H,et al.Effects of SiC content on phase evolution and corrosion behavior of SiC reinforced 316L stainless steel matrix composites by laser melting deposition[J].Optics and Laser Technology,2019,115:134-139.
[38] LI X, ZHANG C H, ZHANG S, et al. Manufacturing of Ti3SiC2 lubricated Co-based alloy coatings using laser cladding technology[J]. Optics and Laser Technology, 2019, 114:209-215.
[39] 牛建强.同轴送粉光纤激光增材制造激光与粉末相互作用机理研究[D].北京:北京工业大学,2014. NIU J Q.Study on mechanism of interaction between laser and powder stream during coaxial fiber laser additive manufacturing[D].Beijing:Beijing University of Technology,2014.
[40] 刘帅,王阳,刘常升.激光熔化沉积技术在制备梯度功能材料中的应用[J].航空制造技术,2018,61(17):47-55. LIU S,WANG Y,LIU C S.Application of laser melting deposition technique in preparation of functionally gradient materials[J].Aeronautical Manufacturing Technology,2018,61(17):47-55.
[41] CUI X,ZHANG S,ZHANG C H,et al.The impact of powder oxygen content on formability of 12CrNi2 alloy steel fabricated by laser melting deposition[J].Powder Metallurgy,2019,62(3):186-195.
[42] 仲崇亮.基于Incone1718的高沉积率激光金属沉积增材制造技术研究[D].北京:中国科学院大学,2015. ZHONG C L.Investigations on high deposition-rate laser metal deposition for additive manufacturing application based on Inconel 718[D].Beijing:University of Chinese Academy of Sciences,2015.
[43] MUMTAZ K A,ERASENTHIRAN P,HOPKINSON N.High density selective laser melting of Waspaloy[J].Journal of Materials Processing Technology,2008,195(1/3):77-87.
[44] 魏增敏,张永忠,高士友,等.激光快速成形技术的发展及其在功能梯度材料制备上的应用[J].材料导报,2005,19(5):77-80. WEI Z M,ZHANG Y Z,GAO S Y,et al.The development of laser direct metal deposition and its application in fabricating functional gradient material[J].Materials Review,2005,19(5):77-80.
[45] 田凤杰,韩辉.功能梯度材料激光快速成形同轴送粉系统设计[J].沈阳理工大学学报,2008,27(6):48-50. TIAN F J,HAN H.Design of coaxial powder feeding system for FGM laser rapid shaping[J].Transactions of Shenyang Ligong University,2008,27(6):48-50.
[46] 卢柯.梯度纳米结构材料[J].金属学报,2015,51(1):1-10. LU K.Gradient nanostructured materials[J].Acta Metallurgica Sinca,2015,51(1):1-10.
[47] LU K.Making strong nanomaterials ductile with gradients[J].Science,2014,345(6203):1455-1456.
[48] COLLINS P C,BANERJEE R,BANERJEE S,et al.Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys[J].Materials Science & Engineering:A,2003,352(1):118-128.
[49] SHIN K H,NATU H,DUTTA D,et al.A method for the design and fabrication of heterogeneous objects[J].Materials & Design,2003,24(5):339-353.
[50] SHAH K,HAQ I U,KHAN A,et al.Parametric study of deve-lopment of Inconel-steel functionally graded materials by laser direct metal deposition[J].Materials & Design,2014,54(531):531-538.
[51] SING S L,YEONG W Y,WIRIA F E.Selective laser melting of titanium alloy with 50wt% tantalum:microstructure and mechanical properties[J].Journal of Alloys & Compounds,2016,660:461-470.
[52] LI W,KARNATI S,KRIEWALL C,et al.Fabrication and cha-racterization of a functionally graded material from Ti-6Al-4V to SS316 by laser metal deposition[J].Additive Manufacturing,2017,14:95-104.
[53] LIMA D D,MANTRI S A,MIKLER C V,et al.Laser additive processing of a functionally graded internal fracture fixation plate[J].Materials & Design,2017,130:8-15.
[54] LIN X,YUE T M,YANG H O,et al.Laser rapid forming of SS316L/Rene88DT graded material[J].Materials Science & Engineering,2005,391(1/2):325-336.
[55] LIN X,YUE T M,YANG H O,et al.Microstructure and phase evolution in laser rapid forming of a functionally graded Ti-Rene88DT alloy[J].Acta Materialia,2006,54(7):1901-1915.
[56] 刘建涛,林鑫,吕晓卫,等.Ti-Ti2AlNb功能梯度材料的激光立体成形研究[J].金属学报,2008,44(8):1006-1012. LIU J T,LIN X,LYU X W,et al.Research on laser solid for-ming of a functionally gradient Ti-Ti2AlNb alloy[J].Acta Meta-llurgica Sinica,2008,44(8):1006-1012.
[57] LIN X,YUE T M,YANG H O,et al.Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy[J].Metallurgical & Materials Transactions A,2007,38(1):127-137.
[58] 杨模聪,林鑫,许小静,等.激光立体成形Ti60-Ti2AlNb梯度材料的组织与相演变[J].金属学报,2009,45(6):729-736. YANG M C,LIN X,XU X J,et al.Microstructure and phase evolution in Ti60-Ti2AlNb gradient material prepared by laser solid forming[J].Acta Metallurgica Sinica,2009,45(6):729-736.
[59] YUE T M,LI T.Laser cladding of Ni/Cu/Al functionally graded coating on magnesium substrate[J].Surface & Coatings Technology,2008,202(13):3043-3049.
[60] QU H P,LI P,ZHANG S Q,et al.Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material[J].Materials & Design,2010,31(1):574-582.
[61] 解航,张安峰,李涤尘,等.激光金属直接成形Ti6Al4V-CoCrMo梯度材料开裂研究[J].中国激光,2013,40(11):89-95. XIE H,ZHANG A F,LI D C,et al.Research on the cracking of Ti6Al4V-CoCrMo gradient material fabricated by laser metal direct forming[J].Chinese Journal of Lasers,2013,40(11):89-95.
[62] QIAN T T,LIU D,TIAN X J,et al.Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process[J].Transactions of Nonferrous Metals Society of China,2014,24(9):2729-2736.
[63] LIANG Y J,TIAN X J,ZHU Y Y,et al.Compositional variation and microstructural evolution in laser additive manufactured Ti/Ti-6Al-2Zr-1Mo-1V graded structural material[J].Materials Science & Engineering:A,2014,599:242-246.
[64] ZHANG C H,ZHANG H,WU C L,et al.Multi-layer functional graded stainless steel fabricated by laser melting deposition[J].Vacuum,2017,141:181-187.
[65] WANG Q,ZHANG S,ZHANG C H,et al.Microstructure evolution and EBSD analysis of a graded steel fabricated by laser additive manufacturing[J].Vacuum,2017,141:68-81.
[66] LIU Y,LIANG C P,LIU W S,et al.Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure[J].Journal of Alloys & Compounds,2018,763:376-383.
[67] SHI Y,LI Y F,LIU J,et al.Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel[J].Optics Laser Technology,2018,99:256-270.
[68] WANG F,MEI J,WU X.Compositionally graded Ti6Al4V + TiC made by direct laser fabrication using powder and wire[J].Materials & Design,2007,28(7):2040-2046.
[69] WILSON J M,SHIN Y C.Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiC[J].Surface & Coatings Technology,2012,207(9):517-522.
[70] MAHAMOOD R M,AKINlABI E T.Laser metal deposition of functionally graded Ti6Al4V/TiC[J].Materials & Design,2015,84:402-410.
[71] ZHANG Y N,BANDYOPADHYAY A.Direct fabrication of compositionally graded Ti-Al2O3,multi-material structures using laser engineered net shaping[J].Additive Manufacturing,2018,21:104-111.
[72] ZHANG J,ZHANG Y,LI W,et al.Microstructure and properties of functionally graded materials Ti6Al4V/TiC fabricated by direct laser deposition[J].Rapid Prototyping Journal,2018,24(4):677-687.
[73] TANG X D,YAO J H,KONG F Z.Manufacture and microstructure performance of H13-TiC gradient composite coating made by laser cladding[J].Laser Technology,2010,34(3):326-334.
[74] PEI X,WANG J,WAN Q,et al.Functionally graded carbon nanotubes/hydroxyapatite composite coating by laser cladding[J].Surface & Coatings Technology,2011,205(19):4380-4387.
[75] 邓刚,李文飞.不同Ca/P比粉末对宽带激光熔覆梯度生物陶瓷涂层组织结构的影响[J].西安建筑科技大学学报,2011,43(1):147-152. DENG G,LI W F.Effects of different Ca/P on microstructure of laser cladding gradient bioceramic coating[J].Journal of Xi'an University of Architecture & Technology,2011,43(1):147-152.
[76] LIN Y,LEI Y,LI X,et al.A study of TiB2/TiB gradient coating by laser cladding on titanium alloy[J].Optics & Lasers in Engineering,2016,82:48-55.
[77] 石磊,李兰兰,张立君,等.钛合金表面激光熔覆生物陶瓷梯度涂层的组织性能分析[J].兵器材料科学与工程,2016,39(1):64-69. SHI L,LI L L,ZHANG L J,et al.Microstructures and properties of bioceramic gradient coatings on surface of titanium alloy by laser cladding[J].Ordnance Material Science & Engineering,2016,39(1):64-69.
[78] LI S N,XIONG H P,LI N,et al.Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding[J].Ceramics International,2017,43(1):961-967.
[79] 张松,崔雪,张春华,等.激光增材制造内韧外刚耐磨铁基合金所用粉料:ZL201810212528.3[P].2019-11-06. ZHANG S,CUI X,ZHANG C H,et al.Powders used in the production of inner toughness and outer wear-resistant iron-based alloys by laser additive manufacturing:ZL201810212528.3[P].2019-11-06.
[1] 陈勇, 陈辉, 姜亦帅, 汪倩, 吴影, 熊俊, 董世运. 高性能金属材料激光增材制造应力变形调控研究现状[J]. 材料工程, 2019, 47(11): 1-10.
[2] 梁秀兵, 程江波, 冯源, 陈永雄, 徐滨士. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45(9): 1-12.
[3] 陈永星, 朱胜, 王晓明, 杜文博, 张垚. 高熵合金制备及研究进展[J]. 材料工程, 2017, 45(11): 129-138.
[4] 陈明慧, 朱红梅, 王新林. 激光熔覆制备金属表面非晶涂层研究进展[J]. 材料工程, 2017, 45(1): 120-128.
[5] 李佩桓, 张勇, 王涛, 张亚洲, 李钊, 贾崇林, 曲选辉. 连续SiC纤维增强金属基复合材料研究进展[J]. 材料工程, 2016, 44(8): 121-129.
[6] 王鸿鼎, 喇培清, 师婷, 魏玉鹏, 卢学峰. 块体纳米晶/微米晶复相金属材料研究现状及其发展趋势[J]. 材料工程, 2013, 0(4): 92-96.
[7] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
[8] 傅高升, 钱匡武, 陈文哲, 康积行. 罐用铝材的研究现状及存在的问题分析[J]. 材料工程, 2000, 0(12): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn