Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (11): 108-115    DOI: 10.11868/j.issn.1001-4381.2019.001162
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨烯的液相剥离制备及在磷酸铁锂正极中的应用
南文争, 燕绍九, 彭思侃, 王晨, 王继贤
中国航发北京航空材料研究院 北京石墨烯技术研究院有限公司, 北京 100095
Preparation of graphene based on liquid phase exfoliation and its application on LiFePO4 electrode for lithium ion battery
NAN Wen-zheng, YAN Shao-jiu, PENG Si-kan, WANG Chen, WANG Ji-xian
Beijing Institute of Graphene Technology Co., Ltd., AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(4409 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以天然鳞片石墨为原料,通过氧化插层、高温膨胀制备石墨烯前驱体,经高压均质液相剥离,得到高结晶度、少缺陷且表面带有纳米孔洞的石墨烯。采用SEM,TEM,AFM,XRD,Raman观察材料的组织结构。将材料制成扣式电池,测试电化学性能。测试结果表明,制备的石墨烯具有典型的褶皱弯曲结构特征,厚度为4层,结晶度高且表面带有纳米孔洞。作为正极导电添加剂用于磷酸铁锂电极,可构建高效导电导离子网络,显著提升电极倍率性能。具体表现为:10 C放电倍率,放电比容量达90 mAh/g;5 C充放循环200周次,容量保持率100%,放电比容量仍达90 mAh/g。石墨烯制备方法简单,可实现工程化批量生产。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
南文争
燕绍九
彭思侃
王晨
王继贤
关键词 液相剥离石墨烯导电添加剂倍率性能    
Abstract:High-crystallinity and low-defect graphene nanosheets with nano pores were prepared from natural flake graphite via high-pressure homogenization liquid phase exfoliation method.The morphology and structure of as-prepared samples were investigated with scanning electron microscopy,transmission electron microscopy, atomic force microscope, X-ray diffraction and Raman spectroscopy.The electrochemical performance was performed using coin cells assembled in an argon-filled glovebox.It was found that the wrinkled graphene sheets with nanoholes consisted of 5 layers,which had high crystallinity.As conductive additives for LiFePO4 cathode,graphene constructed fast pathway for electron and ion transport in the bulk electrode,resulting in superior rate performance.Electrochemical tests showed that the electrode achieved a high reversible capacity of 90 mAh/g at 10 C rate;in addition,the discharge capacity achieved 90 mAh/g when charging and discharging at 5 C rate for 200 cycles,maintaining 100% capacity retention.The approach preparing graphene is facile,which can be suitable for industrial scale production of graphene materials.
Key wordsliquid phase exfoliation    graphene    conductive additive    rate performance
收稿日期: 2019-12-13      出版日期: 2020-11-20
中图分类号:  TB332  
基金资助: 
通讯作者: 燕绍九(1980-),男,研究员,博士,主要从事纳米材料、磁性材料及石墨烯应用研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
南文争, 燕绍九, 彭思侃, 王晨, 王继贤. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48(11): 108-115.
NAN Wen-zheng, YAN Shao-jiu, PENG Si-kan, WANG Chen, WANG Ji-xian. Preparation of graphene based on liquid phase exfoliation and its application on LiFePO4 electrode for lithium ion battery. Journal of Materials Engineering, 2020, 48(11): 108-115.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001162      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/108
[1] ZHANG B,YU Y,LIU Y,et al.Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries[J].Nanoscale,2013,5(5):2100.
[2] BETTGE M,LI Y,SANKARAN B,et al.Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina[J].Journal of Power Sources,2013,233:346-357.
[3] YU L,YE S,MA X,et al.In-situ synthesizing superior high-rate LiFePO4/C nanorods embedded in graphene matrix[J].Electrochimica Acta,2014,117(4):105-112.
[4] 燕绍九,陈翔,洪起虎,等.石墨烯增强铝基纳米复合材料研究进展[J].航空材料学报,2016,36(3):57-70. YAN S J,CHEN X,HONG Q H,et al.Graphene reinforced aluminum matrix nanocomposites[J].Journal of Aeronautical Materials,2016,36(3):57-70.
[5] 王晨,燕绍九,南文争,等.表面活性剂对高浓度石墨烯水分散液制备的影响[J].材料工程,2019,47(7):50-56. WANG C,YAN S J,NAN W Z,et al.Effect of surfactants on preparation of high concentration graphene aqueous dispersion[J].Journal of Materials Engineering,2019,47(7):50-56.
[6] CHEN T,PAN L,LIU X,et al.A comparative study on electrochemical performances of the electrodes with different nanocarbon conductive additives for lithium ion batteries[J].Materials Chemistry and Physics,2013,142(1):345-349.
[7] SU F Y,YOU C H,HE Y B,et al.Flexible and planar graphene conductive additives for lithium-ion batteries[J].Journal of Materials Chemistry,2010,20:9644-9650.
[8] LV W,TANG D M,HE Y B,et al.Low-temperature exfoliated graphenes:vacuum-promoted exfoliation and electrochemical energy storage[J].ACS Nano,2009,3(11):3730-3736.
[9] LEI K,LV W,SU F Y,et al.Electrode thickness control:precondition for quite different functions of graphene conductive additives in LiFePO4 electrode[J].Carbon,2015,92:311-317.
[10] LIU T,SUN S M,ZANG Z,et al.Effects of graphene with different sizes as conductive additives on the electrochemical performance of a LiFePO4 cathode[J].RSC Advances,2017,7(34):20882-20887.
[11] WEI W,LV W,WU M B,et al.The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery[J].Carbon,2013,57:5305363.
[12] HA J,PARK S K,YU S H,et al.A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries[J].Nanoscale,2013,5(18):8647.
[13] LIU T F,ZHAO L,ZHU J S,et al.The composite electrode of LiFePO4 cathode materials modified with exfoliated graphene from expanded graphite for high power Li-ion batteries[J].Journal of Materials Chemistry:A,2014,2(8):2822-2829.
[14] CAI M,THORPE D,ADAMSON D H,et al.Methods of graphite exfoliation[J].Journal of Materials Chemistry,2012,22(48):24992-25002.
[15] DIMIEV A,KOSYNKIN D V,ALEMANY L B,et al.Pristine graphite oxide[J].Journal of the American Chemical Society,2012,134(5):2815-2822.
[16] ELGLER S,ENZELELBERGER H M,GRIMM S,et al.Wet chemical synthesis of graphene[J].Advanced Materials,2013,25(26):3583-3587.
[17] EIGLER S,DOTZER C,HIESCH A,et al.Visualization of defect densities in reduced graphene oxide[J].Carbon,2012,50(10):3666-3673.
[18] SHANG J,XUE F,DING E,et al.Facile fabrication of few-layer graphene and graphite nanosheets by high pressure homogenization[J].Chemical Communications,2015,51(87):15811-15814.
[19] WU G,ZHOU Y,SHAO Z,et al.Carbon nanotube and graphene nanosheet co-modified LiFePO4 nanoplate composite cathode material by a facile polyol process[J].Applied Surface Science,2013,283:999-1005.
[20] YANG J,WANG J,TANG Y,et al.LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries:impact of stacked graphene and unfolded graphene[J].Energy & Environmental Science,2013,6(5):1521-1528.
[21] TANG R,YUN Q B,LV W,et al.How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries[J].Carbon 2016,103:356-362.
[22] SHI Y,WEN L,PEI S,et al.Choice for graphene as conductive additive for cathode of lithium-ion batteries[J]. Journal of Energy Chemistry,2019,30(3):27-34.
[23] ZHANG Y Z,CHEN L,OU J K.et al.Improving the performance of a LiFePO4cathode based on electrochemically cleaved grapphite oxides with high hydrophilicity and good conductivity[J].Jounal of Material Chemistry A,2013,1:7933-7941.
[24] ZHU X J,HU J,WU W,et al.LiFePO4/reduced graphene oxide hybrid cathode for lithium ion battery with outstanding rate performance[J].Journal of Materials Chemistry:A,2014,2(21):7812-7818.
[25] HUI B,HUANG F,TANG Y,et al.Study of LiFePO4 cathode modified by graphene sheets for high-performance lithium ion batteries[J].Electrochimica Acta,2013,88(224):414-420.
[26] FATHOLLAHI F,JAVANBAKHT M,OMIDVAR H,et al.Improved electrochemical properties of LiFePO4/graphene cathode nanocomposite prepared by one-step hydrothermal method[J].Journal of Alloys and Compounds,2015,627:146-152.
[27] TANG Y F,HUANG F Q,BI H,et al.Highly conductive three-dimensional graphene for enhancing the rate performance of LiFePO4[J]. Journal of Power Sources,2012,203:130-134.
[28] LEI X L,ZHANG H Y,CHEN Y M,et al.A three-dimensional LiFePO4/carbon nanotubes/graphene composite as a cathode material for lithium-ion batteries with superior high-rate performance[J].Journal of Alloys and Compounds,2015,626:280-286.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[3] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[4] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[5] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[6] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[7] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[8] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[9] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[10] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[11] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[12] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[13] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[14] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[15] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn