Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 119-127    DOI: 10.11868/j.issn.1001-4381.2019.001175
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ti3SiC2陶瓷材料的制备及抗烧蚀行为
张勇1, 刘华艳2, 张友源2, 燕青芝2
1. 中国科学技术大学 核科学技术学院, 合肥 230026;
2. 北京科技大学 材料科学与工程学院, 北京 100083
Preparation and ablation behavior of Ti3SiC2 ceramics
ZHANG Yong1, LIU Hua-yan2, ZHANG You-yuan2, YAN Qing-zhi2
1. School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China;
2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(30122 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 以固溶少量Al的Ti3SiC2粉体为原料,采用热压烧结工艺制备出致密度大于99%的Ti3SiC2陶瓷块体材料,其硬度、抗弯强度和断裂韧度分别为775HV,520.46 MPa和7.62 MPa·m1/2。对Ti3SiC2块体在无冷却条件下进行抗氧乙炔焰烧蚀实验,结果表明:烧蚀10 s内Ti3SiC2陶瓷保持表面平整,烧蚀25 s内样品未出现宏观裂纹。SEM和XRD观察分析表明,Ti3SiC2陶瓷在高温乙炔焰和氧气的高热流冲击作用下,表面发生分解和氧化,Si和C被氧化为Si-O化物和C-O化物气体逸出,Ti元素被氧化成高温稳定的TiO2金红石相覆盖在表面;氧化层呈3层结构分布,最外层为结构疏松的TiO2,次表层则为TiO2和Al2TiO5组成的致密复合层,内氧化层为致密Al2O3富集层,Al2O3来源于固溶在原料Ti3SiC2中Al元素的氧化,并在高温下与TiO2反应生成了Al2TiO5。具有高黏度和高熔点的Al2O3富集层可以有效阻碍O2和热流向基体的扩散,从而降低基体的氧化速率,提高Ti3SiC2材料的抗烧蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张勇
刘华艳
张友源
燕青芝
关键词 Ti3SiC2高温烧蚀物相组成微观结构    
Abstract:Ti3SiC2 ceramic bulk with a relative density greater than 99% was prepared by hot pressing sintering (HP) using Ti3SiC2 powder as raw material, and the hardness, flexural strength and fracture toughness of HP Ti3SiC2 bulk were 775HV, 520.46 MPa and 7.62 MPa·m1/2, respectively. To evaluate its oxidation-resistance and thermal shock resistance, ultra-high temperature ablation tests were conducted under oxyacetylene flame without cooling. The results show that the Ti3SiC2 ceramics remain flat within 10 s of the ablation, no macrocracks within 25 s.SEM and XRD analysis reveal that Ti3SiC2 samples are decomposed and oxidized during the ultra-high temperature ablation, elements Si and C are oxidized into gaseous Si-O and C-O compounds, TiO2 (rutile) with a loose structure remains on the surface of the sample. To analyze the internal oxide layer, a dense layer composed of rutile TiO2 and Al2TiO5 is observed, under which an Al2O3 particle-enriched layer is found covering the substrate. The dense internal oxide layer can effectively prevent O2 from diffusing inward, thereby reducing the oxidation rate of Ti3SiC2. The high melting point and high viscosity Al2O3 particle layer can absorb a large amount of heat and then reduce the transfer of heat flow to the Ti3SiC2 substrate, thus improving the anti-ablation of the Ti3SiC2 material.
Key wordsTi3SiC2    ablation    phase composition    microstructure
收稿日期: 2019-12-18      出版日期: 2021-09-17
中图分类号:  TB331  
基金资助:中广核集团先进核能战略专项(3100069927)
通讯作者: 刘华艳(1993-),女,硕士研究生,研究方向为MAX相的合成、烧结致密化及性能研究,联系地址:北京科技大学材料科学与工程学院粉末冶金与先进陶瓷研究所(100083),E-mail:18813120692@163.com     E-mail: 18813120692@163.com
引用本文:   
张勇, 刘华艳, 张友源, 燕青芝. Ti3SiC2陶瓷材料的制备及抗烧蚀行为[J]. 材料工程, 2021, 49(9): 119-127.
ZHANG Yong, LIU Hua-yan, ZHANG You-yuan, YAN Qing-zhi. Preparation and ablation behavior of Ti3SiC2 ceramics. Journal of Materials Engineering, 2021, 49(9): 119-127.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001175      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/119
[1] JEITSCHKO W, NOWOTNY H. Die kristallstruktur von Ti3SiC2-ein neuer komplexcarbid-typ[J]. Monatshefte für Chemie-Chemical Monthly, 1967, 98(2):329-337.
[2] BARSOUM M W. The Mn+1AXn phases: a new class of solids; thermodynamically stable nanolaminates[J]. Progress in Solid State Chemistry, 2000, 28(1/4):201-281.
[3] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary compounds[J]. International Materials Reviews, 2011, 56(3):143-166.
[4] BARSOUM M W. MAX phases: properties of machinable ternary carbides and nitrides[M]. New York: John Wiley & Sons, 2013.
[5] BARSOUM M W, EI-RAGHY T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2[J]. Journal of the American Ceramic Society, 1996, 79(7):1953-1956.
[6] ISLAK B Y, AYAS E. Evaluation of properties of spark plasma sintered Ti3SiC2 and Ti3SiC2/SiC composites[J]. Ceramics International, 2019, 45(9):12297-12306.
[7] LIU H, ZHANG X, PENG T, et al. Preparation of large-scale Ti3SiC2 ceramic impeller with complex shape basing on the optimization of sintering manner[J]. Ceramics International, 2019, 45(17):22308-22315.
[8] EI-RAGHY T, BARSOUM M W, ZAVALIANGOS A, et al. Processing and mechanical properties of Ti3SiC2: Ⅱ effect of grain size and deformation temperature[J]. Journal of the American Ceramic Society, 1999, 82(10):2855-2860.
[9] 王超, 吕振林, 张姗姗, 等. Ti3SiC2材料的力学性能及抗损伤机制[J]. 机械工程材料, 2009, 33(1):73-75. WANG C, LYU Z L, ZHANG S S, et al. Mechanical properties and damage mechanism of Ti3SiC2 ceramics[J]. Materials for Mechanical Engineering 2009, 33(1):73-75.
[10] HU S, LI S, LI H, et al. Oxyacetylene torch testing and microstructural characterization of a Cr2AlC ceramic[J]. Journal of Alloys and Compounds, 2018, 740:77-81.
[11] SONG G M, LI S B, ZHAO C X, et al. Ultra-high temperature ablation behavior of Ti2AlC ceramics under an oxyacetylene flame[J]. Journal of the European Ceramic Society, 2011, 31(5):855-862.
[12] 李翀, 赫小东, 朱春城, 等. 三元层状陶瓷Ti3SiC2的高温氧化行为[J]. 材料工程, 2006(1):168-171. LI C, HE X D, ZHU C C, et al. High temperature oxidation behavior of ternary layered Ti3SiC2 ceramic[J]. Journal of Materials Engineering, 2006(1):168-171.
[13] WANG X, ZHOU Y C. Stability and dissociation of nano-laminate Ti3AlC2 induced by selective oxidation upon heating in argon [J]. Chem Mater, 2003, 15:3716-3720.
[14] ZHANG H B, ZHOU Y C, BAO Y W, et al. Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.9Al0.1C2 solid solution[J]. Acta Materialia, 2004, 52(12):3631-3637.
[15] 潘丽青, 尹洪峰, 陈盼军, 等. Al2O3含量对Ti3SiC2/Al2O3复合材料抗氧化性能的影响[J]. 兵器材料科学与工程, 2011, 34(5):74-78. PAN L Q, YIN H F, CHEN P J, et al. Influence of Al2O3 content on the oxidation resistance of Ti3SiC2/Al2O3 composites[J]. Ordnance Material Science & Engineering, 2011, 34(5):74-78.
[1] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[2] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[3] 王港, 刘秀波, 刘一帆, 祝杨, 欧阳春生, 孟元, 罗迎社. 304不锈钢激光熔覆Co-Ti3SiC2自润滑复合涂层微观组织与摩擦学性能[J]. 材料工程, 2021, 49(11): 105-115.
[4] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[5] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[6] 姚彧敏, 李红, 刘正启, 杨敏, 任慕苏, 孙晋良. 高导热碳/碳复合材料微观结构及导热性能[J]. 材料工程, 2020, 48(11): 155-161.
[7] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
[8] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
[9] 刘红娟, 谢水波, 张希晨, 刘迎九, 曾涛涛. 氧化石墨烯复合材料吸附铀的研究进展[J]. 材料工程, 2018, 46(5): 11-21.
[10] 申造宇, 黄光宏, 何利民, 牟仁德, 李建平. 大尺寸TiAl/Ti3Al微叠层超薄板制备和力学性能[J]. 材料工程, 2018, 46(5): 72-78.
[11] 马良来, 高乐, 胡建宝, 乔振杰, 董绍明. 温度对CVD法在纤维表面制备BN涂层的影响[J]. 材料工程, 2018, 46(4): 31-37.
[12] 刘凌峰, 湛利华, 李文科. 升温速率对2219铝合金蠕变时效行为的影响[J]. 材料工程, 2018, 46(3): 117-123.
[13] 郭瑞华, 李振亮, 李慧琴, 樊易, 刘玉乾. 热处理对Mg-5Sm-0.6Zn-0.5Zr合金微观结构与力学性能的影响[J]. 材料工程, 2018, 46(11): 125-133.
[14] 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45(8): 38-42.
[15] 陈红梅, 祝玉林, 王松. 后热处理对Cf/ZrC复合材料微观结构及性能的影响[J]. 材料工程, 2017, 45(8): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn