Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 135-141    DOI: 10.11868/j.issn.1001-4381.2019.001196
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
具有莫来石界面的C/Si-C-N复合材料热物理性能
卢国锋1,2,*(), 乔生儒2
1 渭南师范学院 化学与材料学院, 陕西 渭南 714099
2 西北工业大学 超高温结构复合材料国家重点实验室, 西安 710072
Thermophysical properties of C/Si-C-N composite with mullite interlayer
Guo-feng LU1,2,*(), Sheng-ru QIAO2
1 College of Chemistry and Materials, Weinan Normal University, Weinan 714099, Shaanxi, China
2 National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(3004 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以PIP方法制备界面层、CVI工艺制备基体,制备以Si-C-N陶瓷为基体、以莫来石为界面的碳纤维增强陶瓷基复合材料(C/mullite/Si-C-N)。采用热膨胀仪和激光导热仪分别测试C/mullite/Si-C-N的热膨胀性能和热扩散性能,采用SEM和XRD分析材料的组织和形貌,采用DSC/TG同步分析仪分析基体材料的结构变化。结果表明:在25~1200℃范围内,C/mullite/Si-C-N复合材料的平均热膨胀率为1.58×10-6-1,线膨胀率为0.18%。复合材料的热扩散率与温度呈指数下降关系,这种指数关系是由基体的非晶结构造成的。热处理后的C/mullite/Si-C-N相对于未热处理的试样室温下的热扩散率显著下降,300℃以上的高温区段则略有升高,其在1000℃以下结构稳定,能满足工程应用需求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢国锋
乔生儒
关键词 莫来石热膨胀热扩散界面层热处理    
Abstract

The carbon fiber reinforced Si-C-N ceramic matrix composite with a mullite interlayer(C/mullite/Si-C-N) was fabricated with the matrix fabricated by CVI and the interphase fabricated by PIP. The thermal expansion and heat diffusion were measured by using thermal dilatometer and laser heat conductometer, respectively. SEM and XRD were used to analyze the structure and morphology of the material, and the structural changes in the matrix material were analyzed by DSC/TG simultaneous analyzer. The results indicates that the average coefficient of thermal expansion and line expansion rate of C/mullite/Si-C-N between 25-1200℃ is 1.58×10-6-1 and 0.18%, respectively. The thermal diffusivity decreases exponentially with temperature, which results from the amorphous structure of the matrix. As compared to the unheat-treated sample, the thermal diffusivity of the heat-treated C/mullite/Si-C-N is significantly reduced at room temperature, while slightly increased above 300℃. The structure of the composite is stable below 1000℃, which can meet the needs of engineering applications.

Key wordsmullite    thermal expansion    thermal diffusivity    interlayer    heat-treatment
收稿日期: 2019-12-23      出版日期: 2021-09-17
中图分类号:  TB332  
基金资助:国家自然科学基金项目(50772089);渭南师范学院科研项目(18ZRRC10)
通讯作者: 卢国锋     E-mail: luguof75@163.com
作者简介: 卢国锋(1971-), 男, 副教授, 博士, 研究方向为陶瓷基复合材料和功能陶瓷材料, 联系地址: 陕西省渭南市渭南师范学院化学与材料学院(714099), E-mail: luguof75@163.com
引用本文:   
卢国锋, 乔生儒. 具有莫来石界面的C/Si-C-N复合材料热物理性能[J]. 材料工程, 2021, 49(9): 135-141.
Guo-feng LU, Sheng-ru QIAO. Thermophysical properties of C/Si-C-N composite with mullite interlayer. Journal of Materials Engineering, 2021, 49(9): 135-141.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001196      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/135
Fig.1  C/mullite/Si-C-N复合材料的宏观组织
Fig.2  C/mullite/Si-C-N复合材料的微观结构
Fig.3  所制备界面层物质的X射线衍射图谱
Fig.4  C/mullite/Si-C-N的线膨胀率和平均CTE与温度的关系
Fig.5  C/mullite/Si-C-N和基体瞬态CTE与温度的关系
Fig.6  C/mullite/Si-C-N热扩散率与温度的关系
Fig.7  Si-C-N陶瓷的TG/DSC分析结果(a)未经热处理;(b)热处理
Fig.8  热处理后的Si-C-N陶瓷XRD图谱
1 WANG M , LAIRD C . Tension-tension fatigue of a cross-woven C/SiC composite[J]. Mater Sci Eng: A, 1997, 230, 171- 182.
doi: 10.1016/S0921-5093(97)00018-X
2 GOTO K , FURUKAWA Y , HATTA H , et al. Fatigue behavior of 2D laminate C/C composites at room temperature[J]. Compos Sci Technol, 2005, 65, 1044- 1051.
doi: 10.1016/j.compscitech.2004.09.031
3 CHENG L F , XU Y D , ZHANG L T , et al. Oxidation behavior of three dimensional C/SiC composites in air and combustion gas environments[J]. Carbon, 2000, 38, 2103- 2108.
doi: 10.1016/S0008-6223(00)00068-3
4 LABRUQUōRE S , BLANCHARD H , PAILLER R , et al. Enhancement of the oxidation resistance of interfacial area in C/C composites part Ⅱ: oxidation resistance of B-C, Si-B-C and Si-C coated carbon preforms densified with carbon[J]. J Eur Ceram Soc, 2002, 22, 1011- 1021.
doi: 10.1016/S0955-2219(01)00411-3
5 LU G F , QIAO S R , ZHANG C Y , et al. Oxidation protection of C/Si-C-N composite by a mullite interphase[J]. Compos: Part A, 2008, 39, 1467- 1470.
doi: 10.1016/j.compositesa.2008.05.009
6 LU G F , JIAO G S . Balance the oxidation resistance and mechanical properties of C/Si-C-N composite by a Si-O-C interphase[J]. Composite Interfaces, 2012, 19 (2): 83- 91.
doi: 10.1080/09276440.2012.688721
7 KIM J I , KIM W J , CHOI D J , et al. Design of a C/SiC functionally graded coating for the oxidation protection of C/C composites[J]. Carbon, 2005, 43 (8): 1749- 1757.
doi: 10.1016/j.carbon.2005.02.025
8 LU G F , QIAO S R , ZHANG C Y , et al. Oxidation behaviors and mechanisms of C/Si-C-N with a mullite interlayer[J]. Adv Compos Mater, 2011, 20 (2): 179- 195.
doi: 10.1163/092430410X539280
9 LU T J , HUTCHINSON J W . Effect of matrix cracking and interface sliding on the thermal expansion of fibre-reinforced composites[J]. Composites, 1995, 26, 403- 414.
doi: 10.1016/0010-4361(95)90913-K
10 LUO R Y , LIU T , LI J S , et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J]. Carbon, 2004, 42 (14): 2887- 2895.
doi: 10.1016/j.carbon.2004.06.024
11 TSANG D K L , MARSDEN B J , FOK S L , et al. Graphite thermal expansion relationship for different temperature ranges[J]. Carbon, 2005, 43 (14): 2902- 2906.
doi: 10.1016/j.carbon.2005.06.009
12 DAMJANOVIC T , ARGIRUSIS C , BORCHARDT G , et al. Oxidation protection of C/C-SiC composites by an electrophoretically deposited mullite precursor[J]. J Eur Ceram Soc, 2005, 25, 577- 587.
doi: 10.1016/j.jeurceramsoc.2004.04.005
13 BAXTER R I , RAWLINGS R D , IWASHITA N , et al. Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation[J]. Carbon, 2000, 38 (3): 441- 449.
doi: 10.1016/S0008-6223(99)00125-6
14 SCHNEIDER H , SCHREUER J , HILDMANN B . Structure and properties of mullite-a review[J]. J Eur Ceram Soc, 2008, 28, 329- 344.
doi: 10.1016/j.jeurceramsoc.2007.03.017
15 WU J F , BAI S , CHENG H M . Influence of heat treatment on microstructure and mechanical properties of isotropic pyrolytic carbon[J]. New Carbon Mater, 2006, 21 (3): 225- 230.
16 CHEN J , WANG Y G , CHENG L F , et al. Thermal diffusivity of three-dimensional needled C/SiC-TaC composites[J]. Ceram Int, 2011, 37 (8): 3095- 3099.
doi: 10.1016/j.ceramint.2011.05.046
17 CHENG L F , XU Y D , ZHANG Q , et al. Thermal diffusivity of 3D C/SiC composites from room temperature to 1400 ℃[J]. Carbon, 2003, 41 (4): 707- 711.
doi: 10.1016/S0008-6223(02)00382-2
18 KUMAR S , KUMAR A , SHUKLA A , et al. Thermal-diffusivity measurement of 3D-stitched C-SiC composites[J]. J Eur Ceram Soc, 2009, 29 (3): 489- 495.
doi: 10.1016/j.jeurceramsoc.2008.06.028
19 VǍLU O S , STAICU D , BENEŠ O , et al. Heat capacity, thermal conductivity and thermal diffusivity of uranium-americium mixed oxides[J]. J Alloy Compd, 2014, 614, 144- 150.
doi: 10.1016/j.jallcom.2014.05.083
20 BRULS R J , HINTZEN H T , METSELAAR R . A new estimation method for the intrinsic thermal conductivity of nonmetallic compounds: a case study for MgSiN2, AlN and β-Si3N4 ceramics[J]. J Eur Ceram Soc, 2005, 25 (6): 767- 779.
doi: 10.1016/j.jeurceramsoc.2004.05.003
21 MATSUTANI T , ASANUMA T , LIU C , et al. Ion beam-induced chemical vapor deposition with hexamethyldisilane for hydrogenated amorpous silicon carbide and silicon carbonitride films[J]. Surf Coat Technol, 2003, 169/170, 624- 627.
doi: 10.1016/S0257-8972(03)00130-0
22 MAYNE M , BAHLOUL-HOURLIER D , DOUCEY B , et al. Thermal behaviour of SiCN nanopowders issued from laser pyrolysis[J]. J Eur Ceram Soc, 1998, 18, 1187- 1194.
doi: 10.1016/S0955-2219(98)00041-7
[1] 张轶波, 郑亮, 许文勇, 李周, 张国庆. 热处理温度对刚玉基耐火材料组织和微粒脱落的影响[J]. 材料工程, 2022, 50(6): 138-148.
[2] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[3] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[4] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[5] 赵文青, 齐哲, 吕晓旭, 焦健, 马壮, 朱时珍. 界面层对CVI-mini SiCf/SiC复合材料力学性能的影响[J]. 材料工程, 2021, 49(7): 71-77.
[6] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[7] 林洪玉, 李晓鸿, 陈璐, 杨波, 姚森, 曾小州, 李安林, 黎阳. 硅溶胶添加对氧化铝多孔陶瓷烧结性能的影响[J]. 材料工程, 2021, 49(5): 151-156.
[8] 刘艳芬, 张学习, 沈红先, 孙剑飞, 温亚芹, 王欢, 任晓辉, 阴爽. Ni50.1Mn24.1Ga20.3Fe5.5形状记忆合金多晶纤维的双程形状记忆效应[J]. 材料工程, 2021, 49(3): 41-47.
[9] 孙大翔, 董宇, 叶凌英, 唐建国. 形变热处理工艺对2519A铝合金动态变形行为的影响[J]. 材料工程, 2021, 49(2): 79-87.
[10] 薛彦庆, 郝启堂, 魏典, 李博. 原位自生TiB2/Al-4.5Cu复合材料微观组织和力学性能[J]. 材料工程, 2021, 49(2): 97-104.
[11] 杨博, 李广荣, 徐彤, 杨冠军. 大气等离子喷涂环境障涂层的预热处理致密化方法[J]. 材料工程, 2021, 49(11): 116-124.
[12] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[13] 高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
[14] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[15] 杨伸勇, 张丛春, 杨卓青, 李红芳, 姚锦元, 黄漫国, 汪红, 丁桂甫. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn