Thermophysical properties of C/Si-C-N composite with mullite interlayer
Guo-feng LU1,2,*(), Sheng-ru QIAO2
1 College of Chemistry and Materials, Weinan Normal University, Weinan 714099, Shaanxi, China 2 National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
The carbon fiber reinforced Si-C-N ceramic matrix composite with a mullite interlayer(C/mullite/Si-C-N) was fabricated with the matrix fabricated by CVI and the interphase fabricated by PIP. The thermal expansion and heat diffusion were measured by using thermal dilatometer and laser heat conductometer, respectively. SEM and XRD were used to analyze the structure and morphology of the material, and the structural changes in the matrix material were analyzed by DSC/TG simultaneous analyzer. The results indicates that the average coefficient of thermal expansion and line expansion rate of C/mullite/Si-C-N between 25-1200℃ is 1.58×10-6℃-1 and 0.18%, respectively. The thermal diffusivity decreases exponentially with temperature, which results from the amorphous structure of the matrix. As compared to the unheat-treated sample, the thermal diffusivity of the heat-treated C/mullite/Si-C-N is significantly reduced at room temperature, while slightly increased above 300℃. The structure of the composite is stable below 1000℃, which can meet the needs of engineering applications.
WANG M , LAIRD C . Tension-tension fatigue of a cross-woven C/SiC composite[J]. Mater Sci Eng: A, 1997, 230, 171- 182.
doi: 10.1016/S0921-5093(97)00018-X
2
GOTO K , FURUKAWA Y , HATTA H , et al. Fatigue behavior of 2D laminate C/C composites at room temperature[J]. Compos Sci Technol, 2005, 65, 1044- 1051.
doi: 10.1016/j.compscitech.2004.09.031
3
CHENG L F , XU Y D , ZHANG L T , et al. Oxidation behavior of three dimensional C/SiC composites in air and combustion gas environments[J]. Carbon, 2000, 38, 2103- 2108.
doi: 10.1016/S0008-6223(00)00068-3
4
LABRUQUōRE S , BLANCHARD H , PAILLER R , et al. Enhancement of the oxidation resistance of interfacial area in C/C composites part Ⅱ: oxidation resistance of B-C, Si-B-C and Si-C coated carbon preforms densified with carbon[J]. J Eur Ceram Soc, 2002, 22, 1011- 1021.
doi: 10.1016/S0955-2219(01)00411-3
5
LU G F , QIAO S R , ZHANG C Y , et al. Oxidation protection of C/Si-C-N composite by a mullite interphase[J]. Compos: Part A, 2008, 39, 1467- 1470.
doi: 10.1016/j.compositesa.2008.05.009
6
LU G F , JIAO G S . Balance the oxidation resistance and mechanical properties of C/Si-C-N composite by a Si-O-C interphase[J]. Composite Interfaces, 2012, 19 (2): 83- 91.
doi: 10.1080/09276440.2012.688721
7
KIM J I , KIM W J , CHOI D J , et al. Design of a C/SiC functionally graded coating for the oxidation protection of C/C composites[J]. Carbon, 2005, 43 (8): 1749- 1757.
doi: 10.1016/j.carbon.2005.02.025
8
LU G F , QIAO S R , ZHANG C Y , et al. Oxidation behaviors and mechanisms of C/Si-C-N with a mullite interlayer[J]. Adv Compos Mater, 2011, 20 (2): 179- 195.
doi: 10.1163/092430410X539280
9
LU T J , HUTCHINSON J W . Effect of matrix cracking and interface sliding on the thermal expansion of fibre-reinforced composites[J]. Composites, 1995, 26, 403- 414.
doi: 10.1016/0010-4361(95)90913-K
10
LUO R Y , LIU T , LI J S , et al. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity[J]. Carbon, 2004, 42 (14): 2887- 2895.
doi: 10.1016/j.carbon.2004.06.024
11
TSANG D K L , MARSDEN B J , FOK S L , et al. Graphite thermal expansion relationship for different temperature ranges[J]. Carbon, 2005, 43 (14): 2902- 2906.
doi: 10.1016/j.carbon.2005.06.009
12
DAMJANOVIC T , ARGIRUSIS C , BORCHARDT G , et al. Oxidation protection of C/C-SiC composites by an electrophoretically deposited mullite precursor[J]. J Eur Ceram Soc, 2005, 25, 577- 587.
doi: 10.1016/j.jeurceramsoc.2004.04.005
13
BAXTER R I , RAWLINGS R D , IWASHITA N , et al. Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation[J]. Carbon, 2000, 38 (3): 441- 449.
doi: 10.1016/S0008-6223(99)00125-6
14
SCHNEIDER H , SCHREUER J , HILDMANN B . Structure and properties of mullite-a review[J]. J Eur Ceram Soc, 2008, 28, 329- 344.
doi: 10.1016/j.jeurceramsoc.2007.03.017
15
WU J F , BAI S , CHENG H M . Influence of heat treatment on microstructure and mechanical properties of isotropic pyrolytic carbon[J]. New Carbon Mater, 2006, 21 (3): 225- 230.
16
CHEN J , WANG Y G , CHENG L F , et al. Thermal diffusivity of three-dimensional needled C/SiC-TaC composites[J]. Ceram Int, 2011, 37 (8): 3095- 3099.
doi: 10.1016/j.ceramint.2011.05.046
17
CHENG L F , XU Y D , ZHANG Q , et al. Thermal diffusivity of 3D C/SiC composites from room temperature to 1400 ℃[J]. Carbon, 2003, 41 (4): 707- 711.
doi: 10.1016/S0008-6223(02)00382-2
18
KUMAR S , KUMAR A , SHUKLA A , et al. Thermal-diffusivity measurement of 3D-stitched C-SiC composites[J]. J Eur Ceram Soc, 2009, 29 (3): 489- 495.
doi: 10.1016/j.jeurceramsoc.2008.06.028
19
VǍLU O S , STAICU D , BENEŠ O , et al. Heat capacity, thermal conductivity and thermal diffusivity of uranium-americium mixed oxides[J]. J Alloy Compd, 2014, 614, 144- 150.
doi: 10.1016/j.jallcom.2014.05.083
20
BRULS R J , HINTZEN H T , METSELAAR R . A new estimation method for the intrinsic thermal conductivity of nonmetallic compounds: a case study for MgSiN2, AlN and β-Si3N4 ceramics[J]. J Eur Ceram Soc, 2005, 25 (6): 767- 779.
doi: 10.1016/j.jeurceramsoc.2004.05.003
21
MATSUTANI T , ASANUMA T , LIU C , et al. Ion beam-induced chemical vapor deposition with hexamethyldisilane for hydrogenated amorpous silicon carbide and silicon carbonitride films[J]. Surf Coat Technol, 2003, 169/170, 624- 627.
doi: 10.1016/S0257-8972(03)00130-0
22
MAYNE M , BAHLOUL-HOURLIER D , DOUCEY B , et al. Thermal behaviour of SiCN nanopowders issued from laser pyrolysis[J]. J Eur Ceram Soc, 1998, 18, 1187- 1194.
doi: 10.1016/S0955-2219(98)00041-7