Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (7): 127-132    DOI: 10.11868/j.issn.1001-4381.2019.001207
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
新型高温合金材料建模及涡轮盘成形工艺模拟
王彦菊, 姜嘉赢, 沙爱学, 李兴无
中国航发北京航空材料研究院, 北京 100095
Modeling of newest superalloy and simulation of forming process for turbine disk
WANG Yan-ju, JIANG Jia-ying, SHA Ai-xue, LI Xing-wu
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(2832 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用Gleeble-3800对一种新型变形高温合金材料GH4066进行热物理模拟测试,获得了该材料在温度为800,900,1000,1100,1150℃,应变速率为0.0003,0.001,0.01,0.1,1,10 s-1的不同变形工艺条件下高温流动应力特征。基于实验数据与唯象学模型,建立了该材料的本构关系模型;通过对不同温度、不同应变速率条件下的材料试样进行微观组织观察与晶粒尺寸测试,建立了材料的动态再结晶和晶粒长大模型;将材料本构关系、峰值应力应变、动态再结晶以及晶粒长大模型嵌入有限元软件中进行该材料涡轮盘锻造成形工艺的模拟计算,给出了该材料涡轮盘热锻造成形的合理参数范围。通过对材料模型的准确度验证,建立了一种综合实验与计算的材料模型构建及涡轮盘锻造工艺参数确定的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彦菊
姜嘉赢
沙爱学
李兴无
关键词 高温合金材料本构微观组织动态再结晶晶粒尺寸数值模拟    
Abstract:The thermophysical simulation of a new wrought superalloy GH4066 was carried out by Gleeble-3800. The high temperature flow stress characteristics of this material under different deformation conditions such as the temperature of 800, 900, 1000, 1100℃ and 1150℃, and the strain rate of 0.0003, 0.001, 0.01, 0.1, 1, 10 s-1 were obtained. Based on the experimental data and the phenomenological model, the constitutive model of the material was established. The dynamic recrystallization and grain growth model of the material were also obtained. All the models are embedded into the finite element software to simulate the forging process of the turbine disc made by this material. As the numerical simulation results, the reasonable range of the thermoforming parameters for the turbine disk can be concluded.Finally, the material models are verified and an integrated method of experiment and calculation for the material models construction are established. That is a quite useful method for the parameters determination for the turbine disk forging process of this new material.
Key wordssuperalloy    material constitution    microstructure    dynamic recrystallization    grain size    numerical simulation
收稿日期: 2019-12-24      出版日期: 2020-07-21
中图分类号:  TB31  
基金资助: 
通讯作者: 王彦菊(1981-),女,高级工程师,博士,主要从事航空发动机材料建模与成形工艺模拟仿真等方面的研究,联系地址:北京市81信箱39分箱(100095),E-mail:wyjbiam@163.com     E-mail: wyjbiam@163.com
引用本文:   
王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
WANG Yan-ju, JIANG Jia-ying, SHA Ai-xue, LI Xing-wu. Modeling of newest superalloy and simulation of forming process for turbine disk. Journal of Materials Engineering, 2020, 48(7): 127-132.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001207      或      http://jme.biam.ac.cn/CN/Y2020/V48/I7/127
[1] WANG Z, HUANG S, ZHANG B, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy[J]. Acta Metallurgica Sinica, 2018, 55(3):417-426.
[2] 杜金辉,赵光普,邓群,等. 中国变形高温合金研制进展[J]. 航空材料学报, 2016,36(3):27-39. DU J H, ZHAO G P, DENG Q, et al. Development of wrought superalloy in China[J]. Journal of Aeronautical Materials,2016,36(3):27-39.
[3] ETTER T, KVNZLER A, MEIDANI H. High temperature nickel-base superalloy for use in powder based manufacturing process:US20170021415[P]. 2017.
[4] KARI W. ATI supplies GE aviation with its Rene65 alloy[R/OL].[2012-04-27]. https://www.materialstoday.com/metal-industry/news/ati-supplies-ge-aviation-with-its-rene-65-alloy/.
[5] SAFARI J, NATEGH S. On the heat treatment of Rene-80 nickel-base superalloy[J]. Journal of Materials Processing Technology, 2006, 176(1):240-250.
[6] VISWANATHAN G B, SAROSI P M, WHITIS D H, et al. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy René 88 DT[J]. Materials Science and Engineering:A, 2005, 400/401(1):489-495.
[7] DEVAUX A, PICQUÉ B, GERVAIS M F, et al. AD730TM a new nickel-based superalloy for high temperature engine rotative parts[C]//12th International Symposium on Superalloys. Pennsylvania:TMS, 2012:911.
[8] PANG H T, REED P A S. Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy Udimet 720Li[J]. Materials Science and Engineering:A, 2007, 448(1/2):67-79.
[9] MASOUMI F, JAHAZI M, SHAHRIARI D, et al. Coarsening and dissolution of γ'precipitates during solution treatment of AD730TM Ni-based superalloy:mechanisms and kinetics models[J]. Journal of Alloys and Compounds, 2016, 658:981-995.
[10] CHEN Z, ZHOU J M, PENG R L, et al. Plastic deformation and residual stress in high speed turning of AD730TM nickel-based superalloy with PCBN and WC tools[C]//Procedia CIRP. Tianjin:Elsevier, 2018, 71:440-445.
[11] 谷月峰,崔传勇,袁勇,等. 一种高性能航空涡轮盘用铸锻合金的研究进展[J]. 金属学报, 2015,51(10):1191-1206. GU Y F, CUI C Y, YUAN Y, et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications[J]. Acta Metallurgica Sinica, 2015,51(10):1191-1206.
[12] 王资兴,黄烁,张北江. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019, 55(3):417-426. WANG Z X, HUANG S,ZHANG B J. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy[J].Acta Metallurgica Sinica,2019, 55(3):417-426.
[13] WANG Y J, JIANG J Y, JIA C L, et al. Constitutive model of wrought superalloy GH4066 in hot deformation process[J]. Advanced in Materials Processing, 2017, 978/981:1217-1228.
[14] CASTRO M, DOMÍNGUEZADAME F, SÁNCHEZ A, et al. Model for crystallization kinetics:deviations from Kolmogorov-Johnson-Mehl-Avrami kinetics[J]. Applied Physics Letters, 1999, 75(15):2205-2207.
[15] 余永宁. 金属学原理[M]. 北京:冶金工业出版社,2013. YU Y N. Principles of metallography[M]. Beijing:Metallurgical Industry Press, 2013.
[16] 赵立华,张艳姝,吴桂芳.GH4169高温合金的静态再结晶动力学[J]. 材料热处理学报, 2015(5):217-222. ZHAO L H, ZHANG Y S, WU G F. Investigation on static recrystallization dynamic behavior of superalloy GH4169[J].Transactions of Materials and Heat Treatment, 2015(5):217-222.
[17] LIN Y C, NONG F Q, CHEN X M, et al. Microstructural evolution and constitutive models to predict hot deformation behaviors of a nickel-based superalloy[J]. Vacuum, 2017, 137:104-114.
[18] JI H, LIU J, WANG B, et al. Microstructure evolution and constitutive equations for the high-temperature deformation of 5Cr21Mn9Ni4N heat-resistant steel[J]. Journal of Alloys and Compounds, 2017, 693:674-687.
[1] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[2] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[3] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[4] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[5] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[6] 王旭青, 彭子超, 罗学军, 马国君, 武丹. 时效制度对挤压+锻造工艺路线FGH95粉末高温合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 120-126.
[7] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[8] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[9] 黄敏, 张功, 王栋, 李辉, 董加胜, 楼琅洪. 复杂镍基单晶铸件显微孔洞的形成机理[J]. 材料工程, 2020, 48(2): 123-132.
[10] 秦健朝, 崔仁杰, 黄朝晖. 小角度晶界对DD5镍基单晶高温合金中、高温条件下力学性能的影响[J]. 材料工程, 2020, 48(10): 114-122.
[11] 韩永明, 韩俊玲, 辛龙, 刘廷光, 陆永浩, 庄子哲雄. 晶界工程处理对Inconel 690TT合金微动磨损行为的影响[J]. 材料工程, 2020, 48(10): 123-132.
[12] 林盼盼, 马典, 李昊岳, 王子鸣, 何鹏, 林铁松, 龙伟民. AlNP/Al复合材料与6061Al低温连接组织演变机理及力学性能[J]. 材料工程, 2020, 48(10): 133-140.
[13] 董建民, 李嘉荣, 韩梅. 检验腐蚀对镍基单晶高温合金高周疲劳性能的影响[J]. 材料工程, 2020, 48(1): 77-83.
[14] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[15] 刘承林, 苏海军, 张军, 刘林, 傅恒志. 静磁场对定向凝固镍基高温合金组织影响的研究进展[J]. 材料工程, 2019, 47(9): 13-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn