Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (6): 50-61    DOI: 10.11868/j.issn.1001-4381.2019.001209
  综述 本期目录 | 过刊浏览 | 高级检索 |
人造固态电解质界面在锂金属负极保护中的应用研究
齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九
中国航发北京航空材料研究院 北京石墨烯技术研究院有限公司, 北京 100095
Research and application of artificial solid electrolyte interphases for lithium metal anodes protection
QI Xin, WANG Chen, NAN Wen-zheng, HONG Qi-hu, PENG Si-kan, YAN Shao-jiu
Beijing Institute of Graphene Technology Co., Ltd., AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(2032 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 锂金属具有最低的氧化还原电位(-3.04 V vs标准氢电极)和极高的比容量(3860 mAh·g-1),是理想的锂二次电池负极材料。然而电化学循环过程中,由于锂的不均匀成核生长,其表面产生锂枝晶,锂枝晶持续生长会刺穿隔膜,造成电池短路甚至引发火灾。因此需要对锂金属负极进行保护,抑制负面问题,发挥高性能。人造固态电解质界面技术是一种有效的锂金属负极保护策略,本质是预先在锂金属表面涂覆上保护层,保护层具有较高的离子传导性和电化学稳定性、较好的阻隔性和机械强度,可得到高效率、长寿命和无枝晶的锂金属负极。本文将近年来人造固态电解质界面在锂金属负极保护中的研究进展进行综述,对其制备方法、结构特点、锂金属负极循环性能、全电池电化学性能等方面作了详细介绍,分析当前存在问题并指出锂金属负极研究不仅需要加深机理研究还得与实际应用相结合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐新
王晨
南文争
洪起虎
彭思侃
燕绍九
关键词 负极保护锂二次电池锂金属电池锂枝晶抑制人造固态电解质界面    
Abstract:Lithium metal has the lowest redox potential (-3.04 V vs standard hydrogen electrode) and extremely high specific capacity (3860 mAh·g-1), making it the ideal anodes materials for lithium secondary batteries. However, during the electrochemical cycling, due to the nonuniform nucleation growth of lithium, lithium dendrites are generated on its surface, and continue to grow and pierce the separator, causing short-circuiting of the batteries and even a fire. In the face of increasing energy density requirements, lithium metal anodes have once again become the focus all over the world. Therefore, it is necessary to protect the lithium metal anodes, suppress negative problems, and exert high performance. The artificial solid electrolyte interphase technology is an effective protection strategy for lithium metal anodes, which is essentially coating the surface of lithium metal with protective layers in advance. The artificial solid electrolyte interphase layers should have good ionic conductivity and electrochemical stability, high barrier property and mechanical strength, which can make the lithium metal anodes have high efficiency, long-term life and dendrites-free properties.The artificial solid electrolyte interphase technology brings hope to lithium metal anodes applications. In this review, the research progress of artificial solid electrolyte interphase strategy for lithium metal anodes protection in recent years was reviewed, the preparation methods, structural characteristics, cycling performances of lithium metal anodes and other aspects were introduced in detail. The specific application and performances of artificial solid electrolyte interphases in lithium secondary batteries were for summarized. Moreover,the current problems were analysed and it was pointed out that for researches of lithium metal anodes, not only the mechanism research need to be strengthed, but also needs to be combined with practical applications.
Key wordsanodes protection    lithium secondary battery    lithium metal battery    lithium dendrite suppression    artificial solid electrolyte interphase
收稿日期: 2019-12-24      出版日期: 2020-06-15
中图分类号:  O646.21  
通讯作者: 燕绍九(1980-),男,研究员,博士,主要从事磁性材料及石墨烯应用研究工作,联系地址:北京市81信箱72分箱(100095), shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九. 人造固态电解质界面在锂金属负极保护中的应用研究[J]. 材料工程, 2020, 48(6): 50-61.
QI Xin, WANG Chen, NAN Wen-zheng, HONG Qi-hu, PENG Si-kan, YAN Shao-jiu. Research and application of artificial solid electrolyte interphases for lithium metal anodes protection. Journal of Materials Engineering, 2020, 48(6): 50-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001209      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/50
[1] JIAO F, BRUCE P G. Mesoporous crystalline β-MnO2-a reversible positive electrode for rechargeable lithium batteries[J]. Advanced Materials, 2007, 19(5):657-660.
[2] ZHAMU A, CHEN G, LIU C, et al. Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells[J]. Energy & Environmental Science, 2012, 5(2):5701-5707.
[3] 冯彩梅,巩宇,陈永翀,等. 球磨法制备锂离子液流电池石墨负极浆料的性能研究[J]. 材料工程, 2018, 46(2):1-8. FENG C M, GONG Y, CHEN Y C, et al. Performance study of graphite anode slurry in lithium-ion flow battery by ball milling [J]. Journal of Materials Engineering, 2018, 46(2):1-8.
[4] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
[5] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy & Environmental Science, 2011, 4(9):3243-3262.
[6] 李高锋,李智敏,宁涛,等. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9):23-30. LI G F, LI Z M, NING T, et al. Research progress of cathode materials modified by surface coating for lithium ion batteries [J]. Journal of Materials Engineering, 2018, 46(9):23-30.
[7] 董鹏,张英杰,刘嘉铭,等. 纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J]. 材料工程, 2017, 45(11):49-57. DONG P, ZHANG Y J, LIU J M, et al. Fabrication and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 coated with nano FePO4 as cathode material for lithium-ion batteries [J]. Journal of Materials Engineering, 2017, 45(11):49-57.
[8] HONG Y S, ZHAO C Z, XIAO Y, et al. Safe lithium-metal anodes for Li-O2 batteries: from fundamental chemistry to advanced characterization and effective protection[J]. Batteries & Supercaps, 2019, 2(7):638-658.
[9] CHEN X, HOU T Z, PERSSON K A, et al. Combining theory and experiment in lithium-sulfur batteries: current progress and future perspectives[J]. Materials Today, 2019, 22:142-158.
[10] WANG M Q, PENG Z, LUO W W, et al. Tailoring lithium deposition via an SEI-functionalized membrane derived from LiF decorated layered carbon structure[J]. Advanced Energy Materials, 2019, 9(12):1802912.
[11] KIM Y, KOO D, HA S, et al. Two-dimensional phosphorene-derived protective layers on a lithium metal anode for lithium-oxygen batteries[J]. ACS Nano, 2018, 12(5):4419-4430.
[12] XU W, WANG J, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2):513-537.
[13] CHENG X B, ZHAO C Z, YAO Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1):74-96.
[14] LI Z H, LI X L, ZHOU L, et al. A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks[J]. Nano Energy, 2018, 49:179-185.
[15] 陈筱薷,张睿,程新兵,等. 柔性锂金属电池用无枝晶生长的碳基复合锂电极[J]. 新型炭材料, 2017, 6:600-604. CHEN X R, ZHANG R, CHENG X B, et al. Dendrite-free carbon/lithium metal anodes for use in flexible lithium metal batteries [J]. New Carbon Materials, 2017, 6:600-604.
[16] ZHENG G, LEE S W, LIANG Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9(8):618-623.
[17] ZHAO C Z, DUAN H, HUANG J Q, et al. Designing solid-state interfaces on lithium-metal anodes: a review[J]. Science China Chemistry, 2019, 62(10):1286-1299.
[18] LU Y Y, TU Z Y, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014, 13(10):961-969.
[19] PARK S J, HWANG J Y, YOON C S, et al. Stabilization of lithium-metal batteries based on the in situ formation of a stable solid electrolyte interphase layer[J]. ACS Applied Materials & Interfaces, 2018, 10(21):17985-17993.
[20] MA Y Y, DONG C, YANG Q L, et al. Investigation of polysulfone film on high-performance anode with stabilized electrolyte/electrode interface for lithium batteries[J]. Journal of Energy Chemistry, 2020, 42:49-55.
[21] CHENG X B, YAN C, CHEN X, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2(2):258-270.
[22] WU M, WEN Z, LIU Y, et al. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries[J]. Journal of Power Sources, 2011, 196(19):8091-8097.
[23] KOZEN A C, LIN C F, ZHAO O, et al. Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase[J]. Chemistry of Materials, 2017, 29(15):6298-6307.
[24] TIKEKAR M D, CHOUDHURY S, TU Z, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1(9):16114.
[25] CHAZALVIEL J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, 1990, 42(12):7355-7367.
[26] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. Dendritic growth mechanisms in lithium/polymer cells[J]. Journal of Power Sources, 1999, 81/82:925-929.
[27] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. Concentration measurements in lithium/polymer-electrolyte/lithium cells during cycling[J]. Journal of Power Sources, 2001, 94(2):212-218.
[28] BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. In situ study of dendritic growth in lithium/PEO-salt/lithium cells [J]. Electrochimica Acta, 1998, 43(10/11):1569-1574.
[29] JACKLE M, GROSS A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth[J]. Journal of Chemical Physics, 2014, 141(17):174710.
[30] LING C, BANERJEE D, MATSUI M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology[J]. Electrochimica Acta, 2012, 76:270-274.
[31] WU B B, LOCHALA J, TAVERNE T, et al. The interplay between solid electrolyte interface (SEI) and dendritic lithium growth[J]. Nano Energy, 2017, 40:34-41.
[32] YUAN Y X, WU F, BAI Y, et al. Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode[J]. Energy Storage Materials, 2019, 16:411-418.
[33] KOZEN A C, LIN C F, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9(6):5884-5892.
[34] LIN D, LIU Y, LIANG Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J].Nature Nanotechnology,2016,11(7):626-632.
[35] CHEN Y Q, YUE M, LIU C L, et al. Long cycle life lithium metal batteries enabled with upright lithium anode[J]. Advanced Functional Materials, 2019, 29(15):1806752.
[36] YU L, CANFIELD N L, CHEN S, et al. Enhanced stability of lithium metal anode by using a 3D porous nickel substrate[J]. Chem Electro Chem, 2018, 5(5):761-769.
[37] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3):1600445.
[38] LU K, GAO S Y, DICK R J, et al. A fast and stable Li metal anode incorporating an Mo6S8 artificial interphase with super Li-ion conductivity[J]. Journal of Materials Chemistry:A, 2019, 7(11):6038-6044.
[39] BUONAIUTO M, NEUHOLD S, SCHROEDER D J, et al. Functionalizing the surface of lithium-metal anodes[J]. Chem Plus Chem, 2015, 80(2):363-367.
[40] FAN L, ZHUANG H L, GAO L, et al. Regulating Li deposition at artificial solid electrolyte interphases[J]. Journal of Materials Chemistry A, 2017, 5(7):3483-3492.
[41] CHENG XB, YAN C, ZHANG X Q, et al. Electronic and ionic channels in working interfaces of lithium metal anodes[J]. ACS Energy Letters, 2018, 3(7):1564-1570.
[42] CHEN H, PEI A, LIN D C, et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode[J]. Advanced Energy Materials, 2019:1900858.
[43] LI Y, SUN Y, PEI A, et al. Robust pinhole-free Li3N solid electrolyte grown from molten lithium[J]. ACS Central Science, 2018, 4(1):97-104.
[44] LANG J L, LONG Y Z, QU J, et al. One-pot solution coating of high quality LiF layer to stabilize Li metal anode[J]. Energy Storage Materials, 2019, 16:85-90.
[45] KIM M S, KIM M S, DO V, et al. Designing solid-electrolyte interphases for lithium sulfur electrodes using ionic shields[J]. Nano Energy, 2017, 41:573-582.
[46] BAI M H, XIE K, HONG B, et al. An artificial Li3PO4 solid electrolyte interphase layer to achieve petal-shaped deposition of lithium[J]. Solid State Ionics, 2019, 333:101-104.
[47] LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9):1853-1858.
[48] LIN L D, LIANG F, ZHANG K I, et al. Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode[J]. Journal of Materials Chemistry: A, 2018, 6(32):15859-15867.
[49] LIU W, GUO R, ZHAN B X, et al. Artificial solid electrolyte interphase layer for lithium metal anode in high-energy lithium secondary pouch cells[J]. ACS Applied Energy Materials, 2018, 1(4):1674-1679.
[50] LIU K, PEI A, LEE H R, et al. Lithium metal anodes with an adaptive "solid-liquid" interphase protective layer[J]. Journal of the American Chemical Society, 2017, 139(13):4815-4820.
[51] LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(6):1505-1509.
[52] GAO Y, YAN Z, GRAY J L, et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions[J]. Nature Materials, 2019, 18(4):384-389.
[53] XU R, XIAO Y, ZHANG R, et al. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries[J]. Advanced Materials, 2019, 31(19):e1808392.
[54] LI B, ZHANG D, LIU Y, et al. Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes[J]. Nano Energy, 2017, 39:654-661.
[55] YAO Y Z, ZHAO X H, RAZZAQ A A, et al. Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping[J]. Journal of Materials Chemistry:A, 2019, 7(19):12214-12224.
[56] ZHU J G, LI P K, CHEN X, et al. Rational design of graphitic-inorganic bi-layer artificial SEI for stable lithium metal anode[J]. Energy Storage Materials, 2019, 16:426-433.
[57] SHEN X W, LI Y T, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10(1):900.
[58] MA Q T, SUN X W, LIU P, et al. Biomimetic designed stable lithium metal anodes by co-depositing Li with 2D materials shuttle[J]. Angewandte Chemie International Edition, 2019, 58(19):6200-6206.
[59] UMEDA G A, MENKE E, RICHARD M, et al. Protection of lithium metal surfaces using tetraethoxysilane[J]. Journal of Materials Chemistry, 2011, 21(5):1593-1599.
[60] WANG L, ZHANG L, WANG Q, et al. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating[J]. Energy Storage Materials, 2018, 10:16-23.
[61] SHEN C, GU J, LI X, et al. Formation of stable mixed LiF and Li-Al-alloy reinforced interface film for lithium metal anodes[J]. Chemistry Select, 2019, 4(26):7673-7678.
[62] ZHONG H, WU Y X, DING F, et al. An artificial Li-Al interphase layer on Li-B alloy for stable lithium-metal anode[J]. Electrochimica Acta, 2019, 304:255-262.
[63] FILIPPO M, KURT S, ERIK M, et al. Protection of lithium metal surfaces using chlorosilanes[J]. Langmuir, 2007, 23(23):11597-11602.
[64] THOMPSON R S, SCHROEDER D J, L PEZ C M, et al. Stabilization of lithium metal anodes using silane-based coatings[J]. Electrochemistry Communications, 2011, 13(12):1369-1372.
[65] GAO C H, DONG Q Y, ZHANG G, et al. Antimony-doped lithium phosphate artificial solid electrolyte interphase for dendrite-free lithium-metal batteries[J]. Chem Electro Chem, 2019, 6(4):1134-1138.
[66] LIN D, LIU Y, CHEN W, et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon[J].Nano Letters,2017,17(6):3731-3737.
[67] WANG W W, YUE X Y, MENG J K, et al. Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries[J]. Energy Storage Materials, 2019, 18:414-422.
[68] LIANG J, LI X, ZHAO Y, et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes[J]. Advanced Materials, 2018, 30(45):1804684.
[69] LI T, SHI P, ZHANG R, et al. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior[J]. Nano Research, 2019,12(9):2224-2229.
[70] LI Q, ZENG F L, GUAN Y P, et al. Poly (dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries[J]. Energy Storage Materials, 2018, 13:151-159.
[71] GU J, SHEN C, FANG Z, et al. Toward high-performance Li metal anode via difunctional protecting layer[J]. Frontiers in Chemistry, 2019, 7:572.
[72] LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy, 2017, 2(9):17119.
[73] PANG Q, LIANG X, KOCHETKOV I R, et al. Stabilizing lithium plating by a biphasic surface layer formed in situ[J]. Angewandte Chemie International Edition, 2018, 57(31):9795-9798.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35.
[3] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
[4] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn