Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 66-74    DOI: 10.11868/j.issn.1001-4381.2020.000011
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
3D打印琼脂糖和海藻酸钠复合水凝胶组织与性能研究
汤桂平, 严倩, 刘洁, 宋波, 文世峰, 史玉升
华中科技大学 材料成形与模具技术国家重点实验室, 武汉 430074
Microstructure and properties of 3D printed agarose and sodium alginate composite hydrogel
TANG Gui-ping, YAN Qian, LIU Jie, SONG Bo, WEN Shi-feng, SHI Yu-sheng
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(12688 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 组织工程支架要求材料具有良好的生物相容性、相匹配的力学性能,以及利于细胞生长繁殖的形貌和结构。尽管人们已经开发出了大量生物材料用于制备组织工程支架,然而,组织工程支架的成形困难和力学性能差等问题仍然严重限制着其发展。以海藻酸钠为原材料,通过添加琼脂糖增强其力学性能,研究不同比例海藻酸钠/琼脂糖复合凝胶的结构和形貌变化,测试其力学性能。利用直写打印成形复合水凝胶支架,观察复合凝胶中微观孔隙的大小。结果表明:不同比例的海藻酸钠/琼脂糖复合凝胶含水量差异较小,均在90%附近。除了纯琼脂糖凝胶和体积比为1:2的复合凝胶外,其他比例的复合凝胶表面和断面均比较粗糙。琼脂糖能在一定程度上增强复合凝胶,海藻酸钠与琼脂糖的体积比2:1的复合凝胶压缩模量最高,可达0.353 MPa。碳酸钙的分解在复合凝胶中产生了亚微米级的孔隙,因此制备出的复合凝胶具有适合细胞生长繁殖的粗糙表面和微观孔隙。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤桂平
严倩
刘洁
宋波
文世峰
史玉升
关键词 组织工程支架海藻酸钠琼脂糖3D打印力学性能微观孔隙    
Abstract:The biological scaffolds of tissue engineering are required to have good biocompatibility, matched mechanical properties, as well as morphology and microstructure for cell growth and reproduction. Although a large number of biomaterials have been developed to prepare tissue-engineering scaffolds, the forming problems and poor mechanical properties of the scaffolds still seriously limit the development of tissue engineering. The sodium alginate was used as raw material, and its mechanical properties were enhanced by agarose. The structure and morphology of sodium alginate/agarose composite hydrogels with different ratios were studied,the mechanical properties were tested. In addition, the composite hydrogel scaffold was formed by direct ink writing, and the size of the microscopic pores in composite hydrogels were designed and observed. The results show that the composite hydrogels with different ratios have little difference in water content, all around 90%. Apart from the pure agarose gel and the composite gel with a volume ratio of 1:2, the surface and cross section of the composite gel in other ratios are relatively rough. Agarose can enhance the composite gel to a certain extent, and the composite gel with the volume ratio of sodium alginate to agarose of 2:1 has the highest compression modulus, which can reach 0.353 MPa. The decomposition of calcium carbonate created submicron pores in the composite hydrogel,therefore the prepared composite hydrogel has rough surface and micro-pores,which is conducive for cell growth and reproduction.
Key wordstissue engineering scaffold    sodium alginate    agarose    3D printing    mechanical property    micro-scopic pore
收稿日期: 2020-01-03      出版日期: 2021-05-21
中图分类号:  TB324  
基金资助:华中科技大学青年前沿学术团队项目(2017QYTD06,2018QYTD04)
通讯作者: 宋波(1984-),男,教授,博士,主要研究方向为3D/4D打印技术及材料与结构设计,联系地址:湖北省武汉市洪山区珞喻路1037号华中科技大学快速制造中心(430074),bosong@hust.edu.cn     E-mail: bosong@hust.edu.cn
引用本文:   
汤桂平, 严倩, 刘洁, 宋波, 文世峰, 史玉升. 3D打印琼脂糖和海藻酸钠复合水凝胶组织与性能研究[J]. 材料工程, 2021, 49(5): 66-74.
TANG Gui-ping, YAN Qian, LIU Jie, SONG Bo, WEN Shi-feng, SHI Yu-sheng. Microstructure and properties of 3D printed agarose and sodium alginate composite hydrogel. Journal of Materials Engineering, 2021, 49(5): 66-74.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000011      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/66
[1] RUDGE C, MATESANZ R, DELMONICO F L, et al.International practices of organ donation[J].British Journal of Anaesthesia, 2012, 108(Suppl 1):48-55.
[2] KHOJASTEH A, BEHNIA H, DASHTI S G, et al.Current trends in mesenchymal stem cell application in bone augmentation:a review of the literature[J].Journal of Oral and Maxillofacial Surgery, 2012, 70(4):972-982.
[3] KHOJASTEH A, BEHNIA H, NAGHDI N, et al.Effects of different growth factors and carriers on bone regeneration:a systematic review[J].Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2013, 116(6):405-423.
[4] SHAYESTEH Y S, KHOJASTEH A, SOLEIMANI M, et al.Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold[J].Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, 2008, 106(2):203-209.
[5] SHIEH S J, VACANTI J P.State-of-the-art tissue engineering:from tissue engineering to organ building[J].Surgery, 2005, 137(1):1-7.
[6] GRIFFITH L G, NAUGHTON G.Tissue engineering-current challenges and expanding opportunities[J].Science, 2002, 295(5557):1009-1014.
[7] KHADEMHOSSEINI A, LANGER R.A decade of progress in tissue engineering[J]. Nature Protocols, 2016, 11(10):1775-1781.
[8] LEE K Y, MOONEY D J.Alginate:properties and biomedical applications[J]. Progress in Polymer Science, 2012, 37(1):106-126.
[9] SLAUGHTER B V, KHURSHID S S, FISHER O Z, et al.Hydrogels in regenerative medicine[J].Advanced Materials, 2009, 21(32/33):3307-3329.
[10] ZHAO X, LANG Q, YILDIRIMER L, et al.Photocrosslinkable gelatin hydrogel for epidermal tissue engineering[J].Advanced Healthcare Materials, 2016, 5(1):108-118.
[11] NGUYEN D, HAGG D A, FORSMAN A, et al.Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink[J].Scientific Reports, 2017, 7(1):658.
[12] YANG X, LU Z, WU H, et al.Collagen-alginate as bioink for three-dimensional(3D) cell printing based cartilage tissue engineering[J].Materials Science and Engineering:C, 2018, 83:195-201.
[13] LÓPEZ-MARCIAL G R, ZENG A Y, OSUNA C, et al.Agarose-based hydrogels as suitable bioprinting materials for tissue engineering[J].ACS Biomaterials Science & Engineering, 2018, 4(10):610-3616.
[14] 张小林, 王兰兰, 翁林, 等.海藻酸盐医用材料的制备技术及应用现状[J].棉纺织技术, 2019, 47(4):75-80. ZHANG X L, WANG L L, WENG L, et al.Preparation technology and application status of alginate medical material[J].Cotton Textile Technology, 2019, 47(4):75-80.
[15] JOHNSON F A, CRAIG D Q M, MERCER A D.Characterization of the block structure and molecular weight of sodium alginates[J].Journal of Pharmacy and Pharmacology, 1997, 49(7):639-643.
[16] VENKATESAN J, BHATNAGAR I, MANIVASAGAN P, et al.Alginate composites for bone tissue engineering:a review[J].International Journal of Biological Macromolecules, 2015, 72:269-281.
[17] WENDT D, JAKOB M, MARTIN I.Bioreactor-based enginee-ring of osteochondral grafts:from model systems to tissue manufacturing[J].Journal of Bioscience and Bioengineering, 2005, 100(5):489-494.
[18] 任利玲, 冯雪, 马东洋, 等.不同浓度海藻酸盐凝胶的力学特性及其对软骨细胞增殖能力的影响[J].生物医学工程学杂志, 2012, 29(5):884-888. REN L L, FENG X, MA D Y, et al.Mechanical properties of al-ginate hydrogels with different concentrations and their effects on the proliferation chondrocytes in vitro[J].Journal of Biomedical Engineering, 2012, 29(5):884-888.
[19] KUO C K, MA P X.Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering:part 1.structure, gelation rate and mechanical properties[J].Biomaterials, 2001, 22:511-521.
[20] OUWERX C, VELINGS N, MESTDAGH M M, et al.Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations[J].Polymer Gels and Networks, 1998, 6:393-408.
[21] AUGST A D, KONG H J, MOONEY D J.Alginate hydrogels as biomaterials[J].Macromolecular Bioscience, 2006, 6(8):623-633.
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[3] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
[4] 吴晓芳, 陈凯, 张德坤. 可降解水凝胶作为关节软骨修复材料的研究进展[J]. 材料工程, 2022, 50(2): 12-22.
[5] 万李, 王海蟒, 蔡谞, 胡刻铭, 岳文, 张洪玉. 骨软骨组织工程仿生梯度支架研究进展[J]. 材料工程, 2022, 50(2): 38-49.
[6] 唐鹏钧, 房立家, 王兴元, 李沛勇, 张学军. 人工时效对激光选区熔化AlMg4.5Sc0.55Mn0.5Zr0.2合金显微组织和力学性能的影响[J]. 材料工程, 2022, 50(2): 84-93.
[7] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[8] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[9] 徐学宏, 郑义珠, 陈吉平, 宁博, 刘晓忱. 缝合参数对泡沫夹层结构复合材料力学性能的影响[J]. 材料工程, 2022, 50(1): 132-137.
[10] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[11] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[12] 孙昊飞, 肖志, 韦凯, 杨旭静, 齐军. 预弯曲变形对CP800复相钢力学性能的影响[J]. 材料工程, 2021, 49(8): 81-88.
[13] 姜卓钰, 束小文, 吕晓旭, 高晔, 周怡然, 董禹飞, 焦健. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
[14] 张海连, 段淼, 李四中, 林志勇. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49(7): 85-91.
[15] 唐延川, 万能, 唐兴昌, 刘德佳, 焦海涛, 胡勇, 赵龙志. 合金化组元(Al,Cr,Si,Ti)含量对激光沉积(FeNiCo)-(AlCrSiTi)非等原子比多组元合金涂层组织与力学性能的影响[J]. 材料工程, 2021, 49(7): 92-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn