Please wait a minute...
材料工程  2020, Vol. 48 Issue (7): 61-71    DOI: 10.11868/j.issn.1001-4381.2020.000100
  综述 本期目录 | 过刊浏览 | 高级检索 |
杨泽南1, 李赛2, 于俊杰3, 谢强3, 王祯1, 张明达1, 董浩凯2, 张强1, 杨志刚2
1. 中国航发北京航空材料研究院 先进高温结构材料重点实验室, 北京 100095;
2. 清华大学 材料学院 教育部先进材料重点实验室, 北京 100084;
3. 中国航发四川燃气涡轮研究院, 成都 610500
Progress in effect of alloying element partition on thermodynamics and kinetics of pearlite transformation and its austenitization
YANG Ze-nan1, LI Sai2, YU Jun-jie3, XIE Qiang3, WANG Zhen1, ZHANG Ming-da1, DONG Hao-kai2, ZHANG Qiang1, YANG Zhi-gang2
1. Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Key Laboratory of Advanced Materials(Ministry of Education), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
3. AECC Sichuan Gas Turbine Research Establishment, Chengdu 610500, China
全文: PDF(3279 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
摘要 珠光体相变及其奥氏体化作为涉及三相、两界面的复杂相变过程,其相变过程和物理本质仍有待探索和研究。本文综述了合金钢中珠光体的相变过程,阐述了间隙型合金元素C和置换型合金元素M在相变过程中的配分行为,并介绍了相场模拟在珠光体相变过程中的应用。基于本课题组前期大量的实验和计算结果,进一步讨论了组织与成分的不均匀性对于珠光体逆奥氏体化相变的影响,由于C与M在扩散系数上存在巨大差异,使得该过程中存在动力学发生显著变化的临界转变温度(PNTT)。在此基础上,本文创新性地提出了一种近共析成分含锰钢的热处理工艺,相比于传统Q&P工艺可极大地提高Mn在残余奥氏体中的富集程度,进而提高奥氏体稳定性,为更加系统深入地调控马氏体/奥氏体双相钢组织提供理论指导。
E-mail Alert
关键词 珠光体相变奥氏体化热力学动力学合金元素配分    
Abstract:Pearlite transformation and its re-austenitization process, which involve triple phases and dual phase interfaces, have been considered difficult phase transformation processes. Thus, the mechanism and physical nature of them are waiting to be studied. The partition of carbon and substitutional alloying element M during transformation by integrating the previous results were clarified. Moreover, the application of phase field method in the pearlite transformation was introduced. Based on the large amount of the experimental and calculated results, the influence of the inhomogenous microstructure and composition on the re-austenitization from pearlite were further discussed. Partitional and non-partitional transformed temperature (PNTT), which is due to the large difference of diffusion coefficient between C and M, was further studied. Based on this, a new heat treatment of near-eutectoid Mn-contained steel has been put forward. The segregation of Mn in retained austenite can be significantly improved compared to the traditional Q&P treatment, and then the stability of the retained austenite can be enhanced and the guidance can be provided for controlling the martensite/austenite dual phase microstructure more systematically.
Key wordspearlite transformation    austenitization    thermodynamic    kinetics    alloying element partition
收稿日期: 2020-02-11      出版日期: 2020-07-21
中图分类号:  TG113  
通讯作者: 杨泽南(1990-),男,工程师,博士,主要研究方向为相变热力学与动力学,联系地址:北京市81信箱1分箱(100095),     E-mail:
杨泽南, 李赛, 于俊杰, 谢强, 王祯, 张明达, 董浩凯, 张强, 杨志刚. 合金元素配分对珠光体相变热动力学及其奥氏体化影响的研究进展[J]. 材料工程, 2020, 48(7): 61-71.
YANG Ze-nan, LI Sai, YU Jun-jie, XIE Qiang, WANG Zhen, ZHANG Ming-da, DONG Hao-kai, ZHANG Qiang, YANG Zhi-gang. Progress in effect of alloying element partition on thermodynamics and kinetics of pearlite transformation and its austenitization. Journal of Materials Engineering, 2020, 48(7): 61-71.
链接本文:      或
[1] TIAN Y L, KRAFT R W. Mechanisms of pearlite spheroidization[J]. Metallurgical Transactions A, 1987, 18(8):1403-1414.
[2] LI S, YANG Z N, ENOMOTO M, et al. Study of partition to non-partition transition of austenite growth along pearlite lamellae in near-eutectoid Fe-C-Mn alloy[J]. Acta Materialia, 2019, 177:198-208.
[3] MIYAMOTO G, USUKI H, LI Z D, et al. Effects of Mn, Si and Cr addition on reverse transformation at 1073K from spheroidized cementite structure in Fe-0.6 mass% C alloy[J]. Acta Materialia, 2010, 58(13):4492-4502.
[4] HILLERT M. An analysis of the effect of alloying elements on the pearlite reaction[C]//Proceedings of an International Conference on Solid to Solid Phase Transformations. Warrendale:TMS-AIME, 1982:789-806.
[5] RAZIK N A, LORIMER G W, RIDLEY N. An investigation of manganese partitioning during the austenite-pearlite transformation using analltical electron microscopy[J]. Acta Metallurgica, 1974, 22(10):1249-1258.
[6] CHANCE J, RIDLEY N. Chromium partitioning during isothermal transformation of a eutectoid steel[J]. Metallurgical Transactions A, 1981, 12(7):1205-1213.
[7] RIDLEY N, BURGESS D. Partitioning of Co during pearlite growth in a eutectoid steel[J]. Metal Science, 1984, 18(1):7-12.
[8] HUTCHINSON C R, HACKENBERG R E, SHIFLET G J. The growth of partitioned pearlite in Fe-C-Mn steels[J]. Acta Materialia, 2004, 52(12):3565-3585.
[9] RIDLEY N, MALIK M A, LORIMER G W. Partitioning and pearlite growth kinetics in an Ni-Cr eutectoid steel[J]. Materials Characterization, 1990, 25(1):125-141.
[10] AL-SALMAN S A, RIDLEY N. Partitioning of nickel during pearlite growth[J]. Scripta Metallurgica, 1984, 18(8):789-791.
[11] KIRKALDY J S, THOMSON B A, BAGANIS E A. Hardenability concepts with applications to steel[M]. Warrendale, PA:AIME Transactions Press, 1978.
[12] AL-SALMAN S A, LORIMER G W, RIDLEY N. Partitioning of silicon during pearlite growth in a eutectoid steel[J]. Acta Metallurgica, 1979, 27(8):1391-1400.
[13] AL-SALMAN S A, LORIMER G W, RIDLEY N. Pearlite growth kinetics and partitioning in a Cr-Mn eutectoid steel[J]. Metallurgical and Materials Transactions A, 1979, 10(11):1703-1709.
[14] RAZIK N, LORIMER G, RIDLEY N. Chromium partitioning during the austenite-pearlite transformation[J]. Metallurgical Transactions A, 1976, 7(2):209-214.
[15] COATES D. Diffusion-controlled precipitate growth in ternary systems Ⅰ[J]. Metallurgical Transactions, 1972, 3(5):1203-1212.
[16] COATES D. Diffusion controlled precipitate growth in ternary systems:Ⅱ[J]. Metallurgical Transactions, 1973, 4(4):1077-1086.
[17] ZENER C. Kinetics of the decomposition of austenite[J]. Transactions of the Metallurgical Society of Aime, 1946, 167:550-595.
[18] HILLERT M. On theories of growth during discontinuous precipitation[J]. Metallurgical and Materials Transactions B, 1972, 3(11):2729-2741.
[19] PULS M P, KIRKALDY J S. The pearlite reaction[J]. Metallurgical and Materials Transactions B, 1972, 3(11):2777-2796.
[20] PANDIT A S, BHADESHIA H K D H. Mixed diffusion-controlled growth of pearlite in binary steel[J]. Proceedings of the Royal Society A, 2011, 467:508-521.
[21] PANDIT A S, BHADESHIA H K D H. Diffusion-controlled growth of pearlite in ternary steels[J]. Proceedings of the Royal Society A, 2011, 467:2948-2961.
[22] PANDIT A S. Theory of the pearlite transformation in steels[D]. Cambridge:University of Cambridge, 2011.
[23] SEO S W. Pearlite growth rate in Fe-C binary and Fe-X-C ternary steels[D]. Pohang:Pohang University of Science and Technology, 2014.
[24] 武慧东. Fe-Si-C合金的奥氏体分解动力学和元素配分行为[D]. 北京:清华大学, 2018. WU H D. Transformation kinetics and element partitioning behavior during austenite decomposition in Fe-Si-C alloys[D]. Beijing:Tsinghua University, 2018.
[25] LOGINOVA I, ÅGREN J, AMBERG G. On the formation of Widmanstätten ferrite in binary Fe-C phase-field approach[J]. Acta Materialia, 2004, 52(13):4055-4063.
[26] ARIF T T, QIN R S. A phase-field model for bainitic transformation[J]. Computational Materials Science, 2013, 77:230-235.
[27] LEVITAS V I, JAVANBAKHT M. Phase-field approach to martensitic phase transformations:effect of martensite-martensite interface energy[J]. International Journal of Materials Research, 2011, 102(6):652-665.
[28] NAKAJIMA K, APEL M, STEINBACH I. The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite:a multi-phase field study[J]. Acta Materialia, 2006, 54(14):3665-3672.
[29] STEINBACH I, APEL M. The influence of lattice strain on pearlite formation in Fe-C[J]. Acta Materialia, 2007, 55(14):4817-4822.
[30] AZIZI-ALIZAMINI H, MILITZER M. Phase field modelling of austenite formation from ultrafine ferrit-carbide aggregates in Fe-C[J]. International Journal of Materials Research, 2010, 101(4):534-541.
[31] ZHAO L, VERMOLEN F J, SIETSMA J, et al. Cementite dissolution at 860℃ in an Fe-Cr-C steel[J]. Metallurgical and Materials Transactions A, 2006, 37(6):1841-1850.
[32] REED R C, AKBAY T, SHEN Z, et al. Determination of reaustenitisation kinetics in a Fe-0.4C steel using dilatometry and neutron diffraction[J]. Materials Science and Engineering:A, 1998, 256(1/2):152-165.
[33] SHTANSKY D, NAKAI K, OHMORI Y. Pearlite to austenite transformation in an Fe-2.6Cr-1C alloy[J]. Acta Materialia, 1999, 47(9):2619-2632.
[34] KRAL M V, MANGAN M A, SPANOS G, et al. Three-dimensional analysis of microstructures[J]. Materials Characterization, 2000, 45(1):17-23.
[35] GRAEF M D, KRAL M V, HILLERT M. A modern 3-D view of an "old" pearlite colony[J]. JOM, 58(12):25-28.
[36] LI Z D, MIYAMOTO G, YANG Z G, et al. Nucleation of austenite from pearlitic structure in an Fe-0.6C-1Cr alloy[J]. Scripta Materialia, 2009, 60(7):485-488.
[37] LI Z D, YANG Z G, PAN T, et al. Analytical modeling of austenite growth and phase evolution during reverse transformation from pearlite in high carbon steels[C]//In Solid State Phenomena. Avignon, France:Trans Tech Publications Ltd, 2011:1201-1206.
[38] 李昭东,宫本吾郎,杨志刚,等. Mn和Si对Fe-0.6C钢中珠光体-奥氏体相变的影响[J]. 金属学报, 2010, 46(9):1066-1074. LI Z D, MIYAMOTO G, YANG Z G, et al. Effects of Mn and Si additions on pearlite-austenite phase transformation in Fe-0.6C steel[J]. Acta Metallurgica Sinica, 2010, 46(9):1066-1074.
[39] 李昭东. 变形和合金元素对钢中奥氏体组织形成和分解相变的影响[D]. 北京:清华大学, 2012. LI Z D. Effects of deformation and alloying elements on the formation and decomposition of austenitic structure in steels[D]. Beijing:Tsinghua University, 2012.
[40] LI Z D, MIYAMOTO G, YANG Z G, et al. Kinetics of reverse transformation from pearlite to austenite in an Fe-0.6 mass% C alloy and the effects of alloying elements[J]. Metallurgical and Materials Transactions A, 2011, 42(6):1586-1596.
[41] MIYAMOTO G, LI Z D, USUKI H, et al. Alloying effects on reverse transformation to austenite from pearlite or tempered martensite structures[C]//In Materials Science Forum. Berlin, Germany:Trans Tech Publications Ltd, 2010:3400-3405.
[42] ZHANG G H, CHAE J Y, KIM K H, et al. Effects of Mn, Si and Cr addition on the dissolution and coarsening of pearlitic cementite during intercritical austenitization in Fe-1mass% C alloy[J]. Materials Characterization, 2013, 81:56-67.
[43] KARMAZIN L, KREJ ?Í J. The dependence of the austenitization kinetics on the type of initial spheroidized structure in low alloy steel[J]. Materials Science and Engineering:A, 1994, 185(1/2):15-17.
[44] KARMAZIN L. Experimental study of the austenitization process of hypereutectoid steel alloyed with small amounts of silicon, manganese and chromium, and with an initial structure of globular cementite in a ferrite matrix[J]. Materials Science and Engineering:A, 1991, 142(1):71-77.
[45] MOLINDER G. A quantitative study of the formation of austenite and the solution of cementite at different austenitizing temperatures for a 1.27% carbon steel[J]. Acta Metallurgica, 1956, 4(6):565-571.
[46] HILLERT M, NILSSON K, TORNDAHL L E. Effect of alloying elements on the formation of austenite and dissolution of cementite[J]. Journal of the Iron and Steel Institute, 1971, 209(1):49-66.
[47] XIA Y, ENOMOTO M, YANG Z G, et al. Effects of alloying elements on the kinetics of austenitization from pearlite in Fe-C-M alloys[J]. Philosophical Magazine, 2013, 93(9):1095-1109.
[48] 夏苑. Mn、Mo等合金元素对钢中奥氏体形成及分解动力学的影响[D]. 北京:清华大学, 2015. XIA Y. Effects of Mn, Mo and other alloying elements on the formation and decomposition of austenite in steels[D]. Beijing:Tsinghua University, 2015.
[49] YANG Z N, XIA Y, ENOMOTO M, et al. Effect of alloying element partition in pearlite on the growth of austenite in high-carbon low alloy steel[J]. Metallurgical and Materials Transactions A, 2016, 47(3):1019-1027.
[50] LAI Q Q, GOUNÉ M, PERLADE A, et al. Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe-0.1C-3.5Mn Steel[J]. Metallurgical and Materials Transactions A, 2016, 47(7):3375-3386.
[51] GOUNÉ M, MAUGIS P, DRILLET J. A criterion for the change from fast to slow regime of cementite dissolution in Fe-C-Mn steels[J]. Journal of Materials Science & Technology, 2012, 28(8):728-736.
[52] YANG Z N, ENOMOTO M, ZHANG C, et al. Transition between alloy-element partitioned and non-partitioned growth of austenite from a ferrite and cementite mixture in a high-carbon low-alloy steel[J]. Philosophical Magazine Letters, 2016, 96(7):256-264.
[53] ENOMOTO M, LI S, YANG Z N, et al. Partition and non-partition transition of austenite growth from a ferrite and cementite mixture in hypo-and hypereutectoid Fe-C-Mn alloys[J]. Calphad, 2018, 61:116-125.
[54] 杨泽南,杨志刚,夏苑,等. 层片状珠光体组织奥氏体化速率的计算[J]. 金属学报, 2013, 7(7):890-896. YANG Z N, YANG Z G, XIA Y, et al. Calculation of austenization rate of lamellar pearlite[J]. Acta Metallurgica Sinica, 2013, 7(7):890-896.
[55] SPEER J G, EDMONDS D V, RIZZO F C, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3/4):219-237.
[56] 杨泽南. 合金元素配分与偏聚对钢中相变热力学及动力学的影响[D]. 北京:清华大学, 2017. YANG Z N. Effects of alloying element partition and its interfacial segregation on the thermodynamics and kinetics of phase transformation in steels[D]. Beijing:Tsinghua University, 2017.
[57] LIU Z Q, MIYAMOTO G, YANG Z G, et al. Volume fractions of proeutectoid ferrite/pearlite and their dependence on prior austenite grain size in hypoeutectoid Fe-Mn-C alloys[J]. Metallurgical and Materials Transactions A, 2013, 44(12):5456-5467.
[58] SUN W W, WU Y X, YANG S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scripta Materialia, 2018, 146:60-63.
[1] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[2] 亓淑艳, 王德朋, 赵亚栋, 胥焕岩. 电气石/ZnO复合材料光催化机制[J]. 材料工程, 2019, 47(9): 145-151.
[3] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[4] 孙卫青, 程伟. 基于响应面全局优化技术的蜂窝板材料性能参数修正[J]. 材料工程, 2019, 47(5): 159-166.
[5] 张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
[6] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[7] 吴楠, 崔雪飞, 魏衍广, 陶海明, 罗峥. Cr含量对Ti5Mo5V3Al-Cr系合金等温相变动力学和TTT图的影响[J]. 材料工程, 2018, 46(9): 115-121.
[8] 葛梦妮, 张建峰, 曹惠杨, 王红兵. 剥离时间对二维Ti3C2吸附染料污染物性能的影响[J]. 材料工程, 2018, 46(7): 144-150.
[9] 宋清华, 肖军, 文立伟, 王显峰, 赵聪, 褚奇奕. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4): 120-126.
[10] 张岩, 肖万伸. 含Ni夹杂的纳米晶Cu基体力学性能分子动力学模拟[J]. 材料工程, 2018, 46(4): 104-110.
[11] 马超, 罗海文. GCr15轴承钢热处理过程中碳化物的析出与演变行为[J]. 材料工程, 2017, 45(6): 97-103.
[12] 白于良, 杨银辉, 曹建春, 顾洋, 普靖. Mn对22%Cr双相不锈钢700℃时效σ相及韧性的影响[J]. 材料工程, 2017, 45(5): 71-79.
[13] 崔斌, 杨柳, 邓运来, 谭军, 张骞, 王婷. 添加元素对Mg-3Si合金组织影响[J]. 材料工程, 2017, 45(3): 95-101.
[14] 李贺, 柴丽华, 马腾飞, 陈子勇. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45(2): 39-45.
[15] 张国芳, 张羊换, 许剑轶, 侯忠辉. Ni-5% RExOy复合添加剂对Mg2Ni电化学储氢性能的影响[J]. 材料工程, 2017, 45(11): 72-77.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持