1 Key Laboratory of Science and Technology on Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 Key Laboratory of Advanced Materials(Ministry of Education), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 3 AECC Sichuan Gas Turbine Research Establishment, Chengdu 610500, China
Pearlite transformation and its re-austenitization process, which involve triple phases and dual phase interfaces, have been considered difficult phase transformation processes. Thus, the mechanism and physical nature of them are waiting to be studied. The partition of carbon and substitutional alloying element M during transformation by integrating the previous results were clarified. Moreover, the application of phase field method in the pearlite transformation was introduced. Based on the large amount of the experimental and calculated results, the influence of the inhomogenous microstructure and composition on the re-austenitization from pearlite were further discussed. Partitional and non-partitional transformed temperature (PNTT), which is due to the large difference of diffusion coefficient between C and M, was further studied. Based on this, a new heat treatment of near-eutectoid Mn-contained steel has been put forward. The segregation of Mn in retained austenite can be significantly improved compared to the traditional Q&P treatment, and then the stability of the retained austenite can be enhanced and the guidance can be provided for controlling the martensite/austenite dual phase microstructure more systematically.
Fig.7 层片状珠光体在800 ℃等温不同时间后奥氏体化SEM形貌[54] (a)Fe-0.6C-1Cr合金, t=4.6 s;(b)Fe-0.6C-1Mn合金, t=1.1 s
Fig.8 Fe-0.6C-2Mn合金层片状珠光体800 ℃奥氏体化1.4 s后淬火组织[39]
1
TIAN Y L , KRAFT R W . Mechanisms of pearlite spheroidization[J]. Metallurgical Transactions A, 1987, 18 (8): 1403- 1414.
doi: 10.1007/BF02646654
2
LI S , YANG Z N , ENOMOTO M , et al. Study of partition to non-partition transition of austenite growth along pearlite lamellae in near-eutectoid Fe-C-Mn alloy[J]. Acta Materialia, 2019, 177, 198- 208.
doi: 10.1016/j.actamat.2019.07.038
3
MIYAMOTO G , USUKI H , LI Z D , et al. Effects of Mn, Si and Cr addition on reverse transformation at 1073K from spheroidized cementite structure in Fe-0.6 mass% C alloy[J]. Acta Materialia, 2010, 58 (13): 4492- 4502.
doi: 10.1016/j.actamat.2010.04.045
4
HILLERT M. An analysis of the effect of alloying elements on the pearlite reaction[C]//Proceedings of an International Conference on Solid to Solid Phase Transformations. Warrendale: TMS-AIME, 1982: 789-806.
5
RAZIK N A , LORIMER G W , RIDLEY N . An investigation of manganese partitioning during the austenite-pearlite transformation using analltical electron microscopy[J]. Acta Metallurgica, 1974, 22 (10): 1249- 1258.
doi: 10.1016/0001-6160(74)90138-2
6
CHANCE J , RIDLEY N . Chromium partitioning during isothermal transformation of a eutectoid steel[J]. Metallurgical Transactions A, 1981, 12 (7): 1205- 1213.
doi: 10.1007/BF02642334
7
RIDLEY N , BURGESS D . Partitioning of Co during pearlite growth in a eutectoid steel[J]. Metal Science, 1984, 18 (1): 7- 12.
8
HUTCHINSON C R , HACKENBERG R E , SHIFLET G J . The growth of partitioned pearlite in Fe-C-Mn steels[J]. Acta Materialia, 2004, 52 (12): 3565- 3585.
doi: 10.1016/j.actamat.2004.04.010
9
RIDLEY N , MALIK M A , LORIMER G W . Partitioning and pearlite growth kinetics in an Ni-Cr eutectoid steel[J]. Materials Characterization, 1990, 25 (1): 125- 141.
10
AL-SALMAN S A , RIDLEY N . Partitioning of nickel during pearlite growth[J]. Scripta Metallurgica, 1984, 18 (8): 789- 791.
doi: 10.1016/0036-9748(84)90395-8
11
KIRKALDY J S , THOMSON B A , BAGANIS E A . Hardenability concepts with applications to steel[M]. Warrendale, PA: AIME Transactions Press, 1978.
12
AL-SALMAN S A , LORIMER G W , RIDLEY N . Partitioning of silicon during pearlite growth in a eutectoid steel[J]. Acta Metallurgica, 1979, 27 (8): 1391- 1400.
doi: 10.1016/0001-6160(79)90208-6
13
AL-SALMAN S A , LORIMER G W , RIDLEY N . Pearlite growth kinetics and partitioning in a Cr-Mn eutectoid steel[J]. Metallurgical and Materials Transactions A, 1979, 10 (11): 1703- 1709.
doi: 10.1007/BF02811704
14
RAZIK N , LORIMER G , RIDLEY N . Chromium partitioning during the austenite-pearlite transformation[J]. Metallurgical Transactions A, 1976, 7 (2): 209- 214.
doi: 10.1007/BF02644458
15
COATES D . Diffusion-controlled precipitate growth in ternary systems Ⅰ[J]. Metallurgical Transactions, 1972, 3 (5): 1203- 1212.
doi: 10.1007/BF02642453
16
COATES D . Diffusion controlled precipitate growth in ternary systems:Ⅱ[J]. Metallurgical Transactions, 1973, 4 (4): 1077- 1086.
doi: 10.1007/BF02645611
17
ZENER C . Kinetics of the decomposition of austenite[J]. Transactions of the Metallurgical Society of Aime, 1946, 167, 550- 595.
18
HILLERT M . On theories of growth during discontinuous precipitation[J]. Metallurgical and Materials Transactions B, 1972, 3 (11): 2729- 2741.
doi: 10.1007/BF02652840
19
PULS M P , KIRKALDY J S . The pearlite reaction[J]. Metallurgical and Materials Transactions B, 1972, 3 (11): 2777- 2796.
doi: 10.1007/BF02652844
20
PANDIT A S , BHADESHIA H K D H . Mixed diffusion-controlled growth of pearlite in binary steel[J]. Proceedings of the Royal Society A, 2011, 467, 508- 521.
doi: 10.1098/rspa.2010.0210
21
PANDIT A S , BHADESHIA H K D H . Diffusion-controlled growth of pearlite in ternary steels[J]. Proceedings of the Royal Society A, 2011, 467, 2948- 2961.
doi: 10.1098/rspa.2011.0165
22
PANDIT A S. Theory of the pearlite transformation in steels[D]. Cambridge: University of Cambridge, 2011.
23
SEO S W. Pearlite growth rate in Fe-C binary and Fe-X-C ternary steels[D]. Pohang: Pohang University of Science and Technology, 2014.
24
武慧东. Fe-Si-C合金的奥氏体分解动力学和元素配分行为[D].北京: 清华大学, 2018.
24
WU H D. Transformation kinetics and element partitioning behavior during austenite decomposition in Fe-Si-C alloys[D]. Beijing: Tsinghua University, 2018.
25
LOGINOVA I , ÅGREN J , AMBERG G . On the formation of Widmanstätten ferrite in binary Fe-C phase-field approach[J]. Acta Materialia, 2004, 52 (13): 4055- 4063.
doi: 10.1016/j.actamat.2004.05.033
26
ARIF T T , QIN R S . A phase-field model for bainitic transformation[J]. Computational Materials Science, 2013, 77, 230- 235.
doi: 10.1016/j.commatsci.2013.04.044
27
LEVITAS V I , JAVANBAKHT M . Phase-field approach to martensitic phase transformations:effect of martensite-martensite interface energy[J]. International Journal of Materials Research, 2011, 102 (6): 652- 665.
doi: 10.3139/146.110529
28
NAKAJIMA K , APEL M , STEINBACH I . The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite:a multi-phase field study[J]. Acta Materialia, 2006, 54 (14): 3665- 3672.
doi: 10.1016/j.actamat.2006.03.050
29
STEINBACH I , APEL M . The influence of lattice strain on pearlite formation in Fe-C[J]. Acta Materialia, 2007, 55 (14): 4817- 4822.
doi: 10.1016/j.actamat.2007.05.013
30
AZIZI-ALIZAMINI H , MILITZER M . Phase field modelling of austenite formation from ultrafine ferrit-carbide aggregates in Fe-C[J]. International Journal of Materials Research, 2010, 101 (4): 534- 541.
doi: 10.3139/146.110307
31
ZHAO L , VERMOLEN F J , SIETSMA J , et al. Cementite dissolution at 860℃ in an Fe-Cr-C steel[J]. Metallurgical and Materials Transactions A, 2006, 37 (6): 1841- 1850.
doi: 10.1007/s11661-006-0127-6
32
REED R C , AKBAY T , SHEN Z , et al. Determination of reaustenitisation kinetics in a Fe-0.4C steel using dilatometry and neutron diffraction[J]. Materials Science and Engineering:A, 1998, 256 (1/2): 152- 165.
33
SHTANSKY D , NAKAI K , OHMORI Y . Pearlite to austenite transformation in an Fe-2.6Cr-1C alloy[J]. Acta Materialia, 1999, 47 (9): 2619- 2632.
doi: 10.1016/S1359-6454(99)00142-1
34
KRAL M V , MANGAN M A , SPANOS G , et al. Three-dimensional analysis of microstructures[J]. Materials Characterization, 2000, 45 (1): 17- 23.
35
GRAEF M D , KRAL M V , HILLERT M . A modern 3-D view of an "old" pearlite colony[J]. JOM, 58 (12): 25- 28.
doi: 10.1007/BF02748491
36
LI Z D , MIYAMOTO G , YANG Z G , et al. Nucleation of austenite from pearlitic structure in an Fe-0.6C-1Cr alloy[J]. Scripta Materialia, 2009, 60 (7): 485- 488.
doi: 10.1016/j.scriptamat.2008.11.041
37
LI Z D, YANG Z G, PAN T, et al. Analytical modeling of austenite growth and phase evolution during reverse transformation from pearlite in high carbon steels[C]//In Solid State Phenomena. Avignon, France: Trans Tech Publications Ltd, 2011: 1201-1206.
LI Z D , MIYAMOTO G , YANG Z G , et al. Effects of Mn and Si additions on pearlite-austenite phase transformation in Fe-0.6C steel[J]. Acta Metallurgica Sinica, 2010, 46 (9): 1066- 1074.
39
李昭东.变形和合金元素对钢中奥氏体组织形成和分解相变的影响[D].北京: 清华大学, 2012.
39
LI Z D. Effects of deformation and alloying elements on the formation and decomposition of austenitic structure in steels[D]. Beijing: Tsinghua University, 2012.
40
LI Z D , MIYAMOTO G , YANG Z G , et al. Kinetics of reverse transformation from pearlite to austenite in an Fe-0.6 mass% C alloy and the effects of alloying elements[[J]. Metallurgical and Materials Transactions A, 2011, 42 (6): 1586- 1596.
doi: 10.1007/s11661-010-0560-4
41
MIYAMOTO G, LI Z D, USUKI H, et al. Alloying effects on reverse transformation to austenite from pearlite or tempered martensite structures[C]//In Materials Science Forum. Berlin, Germany: Trans Tech Publications Ltd, 2010: 3400-3405.
42
ZHANG G H , CHAE J Y , KIM K H , et al. Effects of Mn, Si and Cr addition on the dissolution and coarsening of pearlitic cementite during intercritical austenitization in Fe-1mass% C alloy[J]. Materials Characterization, 2013, 81, 56- 67.
doi: 10.1016/j.matchar.2013.04.007
43
KARMAZIN L , KREJ ČÍ J . The dependence of the austenitization kinetics on the type of initial spheroidized structure in low alloy steel[J]. Materials Science and Engineering:A, 1994, 185 (1/2): 15- 17.
44
KARMAZIN L . Experimental study of the austenitization process of hypereutectoid steel alloyed with small amounts of silicon, manganese and chromium, and with an initial structure of globular cementite in a ferrite matrix[J]. Materials Science and Engineering:A, 1991, 142 (1): 71- 77.
45
MOLINDER G . A quantitative study of the formation of austenite and the solution of cementite at different austenitizing temperatures for a 1.27% carbon steel[J]. Acta Metallurgica, 1954, 4 (6): 565- 571.
46
HILLERT M , NILSSON K , TORNDAHL L E . Effect of alloying elements on the formation of austenite and dissolution of cementite[J]. Journal of the Iron and Steel Institute, 1971, 209 (1): 49- 66.
47
XIA Y , ENOMOTO M , YANG Z G , et al. Effects of alloying elements on the kinetics of austenitization from pearlite in Fe-C-M alloys[J]. Philosophical Magazine, 2013, 93 (9): 1095- 1109.
doi: 10.1080/14786435.2012.744484
XIA Y. Effects of Mn, Mo and other alloying elements on the formation and decomposition of austenite in steels[D]. Beijing: Tsinghua University, 2015.
49
YANG Z N , XIA Y , ENOMOTO M , et al. Effect of alloying element partition in pearlite on the growth of austenite in high-carbon low alloy steel[J]. Metallurgical and Materials Transactions A, 2016, 47 (3): 1019- 1027.
doi: 10.1007/s11661-015-3272-y
50
LAI Q Q , GOUNÉ M , PERLADE A , et al. Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe-0.1C-3.5Mn Steel[J]. Metallurgical and Materials Transactions A, 2016, 47 (7): 3375- 3386.
doi: 10.1007/s11661-016-3547-y
51
GOUNÉ M , MAUGIS P , DRILLET J . A criterion for the change from fast to slow regime of cementite dissolution in Fe-C-Mn steels[J]. Journal of Materials Science & Technology, 2012, 28 (8): 728- 736.
52
YANG Z N , ENOMOTO M , ZHANG C , et al. Transition between alloy-element partitioned and non-partitioned growth of austenite from a ferrite and cementite mixture in a high-carbon low-alloy steel[J]. Philosophical Magazine Letters, 2016, 96 (7): 256- 264.
doi: 10.1080/09500839.2016.1197432
53
ENOMOTO M , LI S , YANG Z N , et al. Partition and non-partition transition of austenite growth from a ferrite and cementite mixture in hypo-and hypereutectoid Fe-C-Mn alloys[J]. Calphad, 2018, 61, 116- 125.
doi: 10.1016/j.calphad.2018.03.002
YANG Z N , YANG Z G , XIA Y , et al. Calculation of austenization rate of lamellar pearlite[J]. Acta Metallurgica Sinica, 2013, 7 (7): 890- 896.
55
SPEER J G , EDMONDS D V , RIZZO F C , et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8 (3/4): 219- 237.
56
杨泽南.合金元素配分与偏聚对钢中相变热力学及动力学的影响[D].北京: 清华大学, 2017.
56
YANG Z N. Effects of alloying element partition and its interfacial segregation on the thermodynamics and kinetics of phase transformation in steels[D]. Beijing: Tsinghua University, 2017.
57
LIU Z Q , MIYAMOTO G , YANG Z G , et al. Volume fractions of proeutectoid ferrite/pearlite and their dependence on prior austenite grain size in hypoeutectoid Fe-Mn-C alloys[J]. Metallurgical and Materials Transactions A, 2013, 44 (12): 5456- 5467.
doi: 10.1007/s11661-013-1885-6
58
SUN W W , WU Y X , YANG S C , et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scripta Materialia, 2018, 146, 60- 63.
doi: 10.1016/j.scriptamat.2017.11.007