Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 1-12    DOI: 10.11868/j.issn.1001-4381.2020.000114
  综述 本期目录 | 过刊浏览 | 高级检索 |
陶瓷光固化3D打印技术研究进展
刘雨, 陈张伟
深圳大学 增材制造研究所, 广东 深圳 518060
Research progress in photopolymerization-based 3D printing technology of ceramics
LIU Yu, CHEN Zhang-wei
Additive Manufacturing Institute, Shenzhen University, Shenzhen 518060, Guangdong, China
全文: PDF(4403 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 综述三类主要的陶瓷光固化3D打印技术,即立体光固化(SL)、数字光处理(DLP)和双光子聚合(TPP)的工艺历史起源与演变及其在各类陶瓷材料零部件制造的最新应用研究进展以及部分设备相关产业现状。从原料特性、打印工艺、后处理和陶瓷件性能等方面进行重点总结与讨论。同时,探讨面临的部分问题和挑战,如目前仍然无法规模化生产且生产效率较低,打印件高端工业应用场景还有待挖掘,需要有针对性地进一步发展陶瓷光固化3D打印新材料、新理论和新技术,以寻求效率与应用突破。最后指出结构功能一体化/梯度化制造以及多材料/多工艺复合高效制造是未来陶瓷3D打印技术的重要发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘雨
陈张伟
关键词 陶瓷光固化3D打印增材制造立体光固化数字光处理双光子聚合    
Abstract:The historical evolution, the latest research progress and the related industrial status of equipment development of the three major photopolymerization-based ceramic 3D printing technologies were reviewed, i.e. stereolithography (SL), digital light processing (DLP) and two-photon polymerization (TPP). The characteristics of feedstock materials, printing process, post-treatments and final ceramic properties were summarized and discussed.Meanwhile,some of the issues and challenges such as incapability of mass production and low efficiency persist, and high-end industrial application scenarios of printed parts still need to be excavated. Therefore, new materials, new theories and new technologies regarding ceramic photopolymerization-based 3D printing should be further developed in order to seek for efficiency and application breakthroughs. Finally, it was suggested that structural-functional integral/gradient manufacturing and multi-material/multi-process comprehensive and efficient manufacturing are the important development directions of ceramic 3D printing technology in the future.
Key wordsceramic    photopolymerization    3D printing    additive manufacturing    stereolithography    dig-ital light processing    two-photon polymerization
收稿日期: 2020-02-13      出版日期: 2020-09-17
中图分类号:  TQ174.5  
基金资助: 
通讯作者: 陈张伟(1985-),男,教授,博士,研究方向为增材制造,联系地址:广东省深圳市南山区南海大道3688号深圳大学粤海校区科技楼1010室(518060),E-mail:chen@szu.edu.cn     E-mail: chen@szu.edu.cn
引用本文:   
刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
LIU Yu, CHEN Zhang-wei. Research progress in photopolymerization-based 3D printing technology of ceramics. Journal of Materials Engineering, 2020, 48(9): 1-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000114      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/1
[1] BENGISU M.Engineering ceramics[M].Berlin:Springer Science & Business Media,2013:85-207.
[2] CHEN Z,LI Z,LI J,et al.3D printing of ceramics:a review[J].Journal of the European Ceramic Society,2019,39(4):661-687.
[3] GIBSON I,ROSEN D,STUCKER B.Additive manufacturing technologies:3D printing,rapid prototyping,and direct digital manufacturing[M].New York:Springer Science & Business Media,2014:451-474.
[4] SACHS E,CIMA M,CORNIE J.Three-dimensional printing:rapid tooling and prototypes directly from a CAD model[J].CIRP Annals-Manufacturing Technology,1990,39(1):201-204.
[5] JACOBS P.Rapid prototyping & manufacturing:fundamentals of stereolithography[M].Dearborn:Society of Manufacturing Engineers,1992:1-23.
[6] HULL C W.Methods and apparatus for production of three-dimensional objects by stereolithography:EP0171069A2[P].1986-02-12.
[7] CHEN Z,LI D,ZHOU W,et al.Curing characteristics of ceramic stereolithography for an aqueous-based silica suspension[J].Proceedings of the Institution of Mechanical Engineers,Part B,2010,224(4):641-651.
[8] COLOMBO P,MERA G,RIEDEL R,et al.Polymer-derived ceramics:40 years of research and innovation in advanced ceramics[J].Journal of the American Ceramic Society,2010,93(7):1805-1837.
[9] NAKAMOTO T,YAMAGUCHI K.Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer[C]//MHS'96 Proceedings of the Seventh International Symposium on Micro Machine and Human Science.Nagoya:IEEE,1996:53-58.
[10] BERTSCH A,ZISSI S,JEZEQUEL J,et al.Microstereophotolithography using a liquid crystal display as dynamic mask-generator[J].Microsystem Technologies,1997,3(2):42-47.
[11] SUN C,FANG N,WU D,et al.Projection micro-stereolithography using digital micro-mirror dynamic mask[J].Sensors and Actuators A:Physical,2005,121(1):113-120.
[12] HORNBECK L.Digital light processing for high-brightness high-resolution applications[C]//EI'97 Proceedings of SPIE Projection Displays Ⅲ.San Jose:IS &T and SPIE,1997:27-41.
[13] ZHANG A,QU X,SOMAN P,et al.Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography[J].Advanced Materials,2012,24(31):4266-4270.
[14] VARADAN V K,JIANG X N,VARADAN V V.Microstereolithography and other fabrication techniques for 3D MEMS[M].New York:John Wiley & Sons Inc,2001:20-24.
[15] SUN H,KAWATA S.Two-photon photopolymerization and 3D lithographic microfabrication[J].Advances in Polymer Science,2004,170:169-273.
[16] LEE K,KIM R,YANG D,et al.Advances in 3D nano/microfabrication using two-photon initiated polymerization[J].Progress in Polymer Science,2008,33(6):631-681.
[17] WU E,STRICKLER J,HARRELL W,et al.Two-photon lithography for microelectronic application[C]//Optical/Laser Microlithography Ⅴ.New York:International Society for Optics and Photonics,1992:776-783.
[18] MARUO S,NAKAMURA O,KAWATA S.Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J].Optics Letters,1997,22(2):132-134.
[19] CUMPSTON B,ANANTHAVEL S,BARLOW S,et al.Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J].Nature,1999,398(6722):51-58.
[20] SCHIZAS C,MELISSINAKI V,GAIDUKEVICIUTE A,et al.On the design and fabrication by two-photon polymerization of a readily assembled micro-valve[J].The International Journal of Advanced Manufacturing Technology,2010,48(5/8):435-441.
[21] SMARTECH.Ceramics additive manufacturing markets 2017-2028[R].Virginia US:SmarTech Markets Publishing,2018:4-8.
[22] GRIFFITH M,HALLORAN J.Freeform fabrication of ceramics via stereolithography[J].Journal of the American Ceramic Society,1996,79(10):2601-2608.
[23] HALLORAN J,TOMECKOVA V,GENTRY S,et al.Photopolymerization of powder suspensions for shaping ceramics[J].Journal of the European Ceramic Society,2011,31(14):2613-2619.
[24] BAE C,RAMACHANDRAN A,HALLORAN J.Quantifying particle segregation in sequential layers fabricated by additive manufacturing[J].Journal of the European Ceramic Society,2018,38(11):4082-4088.
[25] ZIMBECK W,POPE M,RICE R.Microstructures and strengths of metals and ceramics made by photopolymer-based rapid prototyping[C]//Proceedings of the International Solid Freeform Fabrication Symposium.Texas:University of Texas Press,1996:411-418.
[26] DE HAZAN Y,PENNER D.SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems[J].Journal of the European Ceramic Society,2017,37(16):5205-5212.
[27] GENTRY S,HALLORAN J.Depth and width of cured lines in photopolymerizable ceramic suspensions[J].Journal of the European Ceramic Society,2013,33(10):1981-1988.
[28] BADEV A,ABOULIATIM Y,CHARTIER T,et al.Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography[J].Journal of Photochemistry and Photobiology A:Chemistry,2011,222(1):117-122.
[29] BAE C.Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography[D].Ann Arbor:University of Michigan,2008.
[30] LEIGH S,PURSSELL C,BOWEN J,et al.A miniature flow sensor fabricated by micro-stereolithography employing a magnetite/acrylic nanocomposite resin[J].Sensors and Actuators A:Physical,2011,168(1):66-71.
[31] CHEN W,KIRIHARA S,MIYAMOTO Y.Fabrication and measurement of micro three-dimensional photonic crystals of SiO2 ceramic for terahertz wave applications[J].Journal of the American Ceramic Society,2007,90(7):2078-2081.
[32] DU D,ASAOKA T,USHIDA T,et al.Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography[J].Biofabrication,2014,6(4):045002.
[33] SARMENT D,AL-SHAMMARI K,KAZOR C.Stereolithographic surgical templates for placement of dental implants in complex cases[J].International Journal of Periodontics & Restorative Dentistry,2003,23(3):286-295.
[34] BAE C,HALLORAN J.Influence of residual monomer on cracking in ceramics fabricated by stereolithography[J].International Journal of Applied Ceramic Technology,2011,8(6):1289-1295.
[35] MITTERAMSKOGLER G,GMEINER R,FELZMANN R,et al.Light curing strategies for lithography-based additive manufacturing of customized ceramics[J].Additive Manufacturing,2014,1/4:110-118.
[36] PFAFFINGER M,MITTERAMSKOGLER G,GMEINER R,et al.Thermal debinding of ceramic-filled photopolymers[J].Materials Science Forum,2015,825/826:75-81.
[37] FELZMANN R,GRUBER S,MITTERAMSKOGLER G,et al.Lithography-based additive manufacturing of cellular ceramic structures[J].Advanced Engineering Materials,2012,14(12):1052-1058.
[38] GMEINER R,MITTERAMSKOGLER G,STAMPFL J,et al.Stereolithographic ceramic manufacturing of high strength bioactive glass[J].International Journal of Applied Ceramic Technology,2015,12(1):38-45.
[39] SCHWENTENWEIN M,HOMA J.Additive manufacturing of dense alumina ceramics[J].International Journal of Applied Ceramic Technology,2015,12(1):1-7.
[40] SCHWENTENWEIN M,SCHNEIDER P,HOMA J.Lithography-based ceramic manufacturing:a novel technique for additive manufacturing of high-performance ceramics[J].Advances in Science and Technology,2014,88:60-64.
[41] SCHEITHAUER U,SCHWARZER E,GANZER G,et al.Micro-reactors made by lithography-based ceramic manufacturing (LCM)[C]//Proceedings of 11th International Symposium on Ceramic Materials and Components for Energy and Environmental Applications (CMCEE-11). Vancouver:the American Ceramic Society, 2015:31-41.
[42] SCHEITHAUER U,SCHWARZER E,MORITZ T,et al.Additive manufacturing of ceramic heat exchanger:opportunities and limits of the lithography-based ceramic manufacturing (LCM)[J].Journal of Materials Engineering and Performance,2018,27(1):14-20.
[43] LANTADA A,DE BLAS ROMERO A,SCHWENTENWEIN M,et al.Lithography-based ceramic manufacture (LCM) of auxetic structures:present capabilities and challenges[J].Smart Materials and Structures,2016,25(5):054015.
[44] ECKEL Z,ZHOU C,MARTIN J,et al.Additive manufacturing of polymer-derived ceramics[J].Science,2016,351(6268):58-62.
[45] ZANCHETTA E,CATTALDO M,FRANCHIN G,et al.Stereolithography of SiOC ceramic microcomponents[J].Advanced Materials,2016,28(2):370-376.
[46] TOMA L,KLEEBE H,MÜLLER M,et al.Correlation between intrinsic microstructure and piezoresistivity in a SiOC polymer-derived ceramic[J].Journal of the American Ceramic Society,2012,95(3):1056-1061.
[47] SCHMIDT J,BRIGO L,GANDIN A,et al.Multiscale ceramic components from preceramic polymers by hybridization of vat polymerization-based technologies[J].Additive Manufacturing,2019,30:100913.
[48] SCHMIDT J,COLOMBO P.Digital light processing of ceramic components from polysiloxanes[J].Journal of the European Ceramic Society,2018,38(1):57-66.
[49] PHAM T,KIM D,LIM T,et al.Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists[J].Advanced Functional Materials,2006,16(9):1235-1241.
[50] PARK S,LEE D,RYOO H,et al.Fabrication of three-dimensional SiC ceramic microstructures with near-zero shrinkage via dual crosslinking induced stereolithography[J].Chemical Communications,2009(32):4880-4882.
[51] COLOMBO P,SCHMIDT J,FRANCHIN G,et al.Additive manufacturing techniques for fabricating complex ceramic components from preceramic polymers[J].American Ceramic Society Bulletin,2017,96:16-23.
[52] KOROLEVA A,DEIWICK A,NGUYEN A,et al.Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique[J].Plos One,2015,10(2):e0118164.
[53] CHEN Z,LI D,ZHOU W.Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method[J].Proceedings of the Institution of Mechanical Engineers, Part B,2012,226(7):1249-1258.
[54] 周伟召,李涤尘,陈张伟,等.陶瓷浆料光固化快速成形特性研究及其工程应用[J].航空制造技术,2010(8):36-42. ZHOU W Z,LI D C,CHEN Z W,et al.Curing behaviors of ceramic suspension in stereolithography and its engineering applications[J].Aeronautical Manufacturing Technology,2010(8):36-42.
[55] ZHOU W,LI D,CHEN Z,et al.Direct fabrication of an integral ceramic mould by stereolithography[J].Proceedings of the Institution of Mechanical Engineers,Part B,2010,224(2):237-243.
[56] ZHOU W,LI D,WANG H.A novel aqueous ceramic suspension for ceramic stereolithography[J].Rapid Prototyping Journal,2010,16(1):29-35.
[57] BIAN W,LI D,LIAN Q,et al.Design and fabrication of a novel porous implant with pre-set channels based on ceramic stereolithography for vascular implantation[J].Biofabrication,2011,3(3):034103.
[58] LIAN Q,WU X,LI D,et al.Accurate printing of a zirconia molar crown bridge using three-part auxiliary supports and ceramic mask projection stereolithography[J].Ceramics International,2019,45(15):18814-18822.
[59] 杨飞,连芩,武向权,等.陶瓷面曝光快速成型工艺研究[J].机械工程学报,2017,53(7):138-144. YANG F,LIAN Q,WU X Q,et al.Ceramics fabrication using rapid prototyping of mask projection stereolithography[J].Journal of Mechanical Engineering,2017,53(7):138-144.
[60] CHEN Z,LI J,LIU C,et al.Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing[J].Ceramics International,2019,45(9):11549-11557.
[61] CHEN Z,LIU C,LI J,et al.Mechanical properties and microstructures of 3D printed bulk cordierite parts[J].Ceramics International,2019,45(15):19257-19267.
[62] FU Y,CHEN Z,XU G,et al.Preparation and stereolithography 3D printing of ultralight and ultrastrong ZrOC porous ceramics[J].Journal of Alloys and Compounds,2019,789:867-873.
[63] FU Y,XU G,CHEN Z,et al.Multiple metals doped polymer-derived SiOC ceramics for 3D printing[J].Ceramics International,2018,44(10):11030-11038.
[64] LI Z,CHEN Z,LIU J,et al.Additive manufacturing of lightweight and high-strength polymer-derived SiOC ceramics[J].Virtual and Physical Prototyping,2020,5(7):1-15.
[65] ZHOU M,LIU W,WU H,et al.Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography-optimization of the drying and debinding processes[J].Ceramics International,2016,42(10):11598-11602.
[66] WU H,LIU W,HE R,et al.Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing[J].Ceramics International,2017,43(1):968-972.
[67] ZHANG K,HE R,DING G,et al.Digital light processing of 3Y-TZP strengthened ZrO2 ceramics[J].Materials Science and Engineering:A,2020,774:138768.
[68] DING G,HE R,ZHANG K,et al.Dispersion and stability of SiC ceramic slurry for stereolithography[J].Ceramics International,2020,46(4):4720-4729.
[69] ZHANG K,XIE C,WANG G,et al.High solid loading,low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing[J].Ceramics International,2019,45(1):203-208.
[70] LI H,LIU Y,LIU Y,et al.Influence of sintering temperature on microstructure and mechanical properties of Al2O3 ceramic via 3D stereolithography[J].Acta Metallurgica Sinica (English Letters),2020,33(2):204-214.
[71] LIU Z,LIANG H,SHI T,et al.Additive manufacturing of hydroxyapatite bone scaffolds via digital light processing and in vitro compatibility[J].Ceramics International,2019,45(8):11079-11086.
[72] CHEN Z.3D printing of ceramics:technology & equipment[R].Shanghai:TCT Asia TECH Stage,2019:34-35.
[73] BRODNIK N,SCHMIDT J,COLOMBO P,et al.Analysis of multi-scale mechanical properties of ceramic trusses prepared from preceramic polymers[J].Additive Manufacturing,2020,31:100957.
[74] ROSA M,BAROU C,ESPOSITO V.Zirconia UV-curable colloids for additive manufacturing via hybrid inkjet printing-stereolithography[J].Materials Letters,2018,215:214-217.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 曲丽丹, 韩斌慧, 吕云卓, 白钰枝. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48(7): 133-138.
[3] 芦刚, 查军辉, 严青松, 宋方睿, 于航. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48(7): 170-175.
[4] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[5] 孙志强, 张剑, 杨小波, 王华栋, 韩耀, 吕毅, 李淑琴. 球形纳米氧化铝颗粒制备微晶陶瓷及传质动力学研究[J]. 材料工程, 2020, 48(3): 127-133.
[6] 郑镭, 孙维连, 孙铂, 张雪静, 纪宏超. 挤出方式对黏弹性浆料3D打印出料可控性的影响[J]. 材料工程, 2020, 48(3): 134-141.
[7] 陈舒怡, 陈双, 吴甲民, 何宁辉, 史玉升, 李晨辉, 张矿, 崔等, 王永均. 煤系高岭土光固化浆料的流变性能[J]. 材料工程, 2020, 48(3): 142-147.
[8] 孙博, 夏铭, 张志彬, 梁秀兵, 沈宝龙. 难熔高熵合金性能调控与增材制造[J]. 材料工程, 2020, 48(10): 1-16.
[9] 马绪强, 苏正涛. 民用航空发动机树脂基复合材料应用进展[J]. 材料工程, 2020, 48(10): 48-59.
[10] 何代华, 朱威, 刘翔, 刘平. 硅酸钙及硅酸钠浓度对钛合金表面生物活性涂层的影响[J]. 材料工程, 2020, 48(10): 148-156.
[11] 刘帅, 郭广平, 郝文峰, 杨洋, 张悦, 陈子木. 基于数字体相关方法的3D打印材料内部变形测量[J]. 材料工程, 2020, 48(10): 176-183.
[12] 余煜玺, 韩滨. PDC-SiBCN陶瓷基无线无源温度传感器的性能[J]. 材料工程, 2020, 48(1): 121-127.
[13] 赵梓钧, 杨新岐, 李胜利, 李冬晓. 工具形状及工艺过程对搅拌摩擦增材成形及缺陷的影响[J]. 材料工程, 2019, 47(9): 84-92.
[14] 刘培生, 杨春艳, 程伟. 多孔材料性能模型研究3:数理推演[J]. 材料工程, 2019, 47(8): 59-81.
[15] 赵枢明, 薛铠华, 杨通, 张雪, 姚山. 烧结颈分布对3D打印覆膜Al2O3零件强度的影响[J]. 材料工程, 2019, 47(8): 132-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn