Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 24-33    DOI: 10.11868/j.issn.1001-4381.2020.000134
  综述 本期目录 | 过刊浏览 | 高级检索 |
航空发动机涡轮叶片超温服役损伤的研究进展
赵云松1, 张迈1,2, 郭小童3, 郭媛媛4, 赵昊3, 刘砚飞4, 姜华1, 张剑1, 骆宇时1
1. 中国航发北京航空材料研究院 先进高温结构材料重点实验室, 北京 100095;
2. 北京科技大学 材料科学与工程学院, 北京 100083;
3. 中国电子产品可靠性与环境试验研究所, 广州 510610;
4. 中国航发四川燃气涡轮研究院, 成都 610500
Recent progress in service induced degradation of turbine blades of aeroengine due to overheating
ZHAO Yun-song1, ZHANG Mai1,2, GUO Xiao-tong3, GUO Yuan-yuan4, ZHAO Hao3, LIU Yan-fei4, JIANG Hua1, ZHANG Jian1, LUO Yu-shi1
1. Key Laboratory of Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
3. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China;
4. AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China
全文: PDF(3538 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 涡轮叶片是航空发动机的核心热端部件之一,其安全服役对航空发动机的正常运行至关重要。当发动机遭遇非正常工况时,涡轮叶片的服役温度可能急剧上升并超过正常工作允许温度,即发生超温服役。超温可使叶片遭受严重的组织退化,导致叶片提前失效。本文介绍了航空发动机涡轮叶片过热检查和失效分析的方法,详细阐述了超温服役对显微组织与力学性能影响的研究进展。此外,本文还对高温合金超温服役损伤评价、寿命预测和组织修复提出了展望,为叶片服役评价与失效分析及新型高温合金的研制提供了参考借鉴和理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵云松
张迈
郭小童
郭媛媛
赵昊
刘砚飞
姜华
张剑
骆宇时
关键词 涡轮叶片超温显微组织力学性能    
Abstract:As one of the core hot components of aeroengines, the safe service of turbine blades is crucial to the operation of aeroengines.When the aeroengines encounter some emergency conditions, the turbine blades may suffer overheating, the temperature of which is much higher than the highest normal operating temperature. Overheating can lead to serious microstructural degradation and even premature failure of turbine blades. In this paper,the methods of overheat inspection and failure analysis were introduced, as well asthe effects of overheating on the microstructural degradation and mechanical propertiesof aeroenginesturbine blades. In addition, the damage assessment, life prediction and microstructure rejuvenation of superalloys after overheating were prospected in this paper, which provide a guidance and theoretical basis for the degradation evaluation and failure analysis of turbine blades as well as the development of new superalloys.
Key wordsturbine blade    overheating    microstructure    mechanical property
收稿日期: 2020-02-20      出版日期: 2020-09-17
中图分类号:  TG132.32  
  TG156.1  
通讯作者: 郭小童(1988-),男,博士,主要从事高温合金服役损伤及评价等研究工作,联系地址:广东省广州市中国电子产品可靠性与环境试验研究所(510610),E-mail:guoxiaotong0713@163.com     E-mail: guoxiaotong0713@163.com
引用本文:   
赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
ZHAO Yun-song, ZHANG Mai, GUO Xiao-tong, GUO Yuan-yuan, ZHAO Hao, LIU Yan-fei, JIANG Hua, ZHANG Jian, LUO Yu-shi. Recent progress in service induced degradation of turbine blades of aeroengine due to overheating. Journal of Materials Engineering, 2020, 48(9): 24-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000134      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/24
[1] 陶春虎,钟培道,王仁智,等. 航空发动机转动部件的时效与预防[M]. 北京:国防工业出版社, 2008. TAO C H, ZHONG P D, WANG R Z, et al. Failure analysis and prevention for rotor in aero-engine[M]. Beijing:National Defense Industry Press, 2008.
[2] REED R C. The superalloys:fundamentals and applications[M]. Cambridge:Cambridge University Press, 2008.
[3] SIMS C T, STOLOFF N S, HAGEL W C. Superalloys Ⅱ:high-temperature materials for aerospace and industrial power[M]. New York:Materialsence, 1987.
[4] CHABOCHE J L, GALLERNEAU F. An overview of the damage approach of durability modelling at evaluated temperature[J]. Fatigue & Fracture of Engineering Materials Structures, 2001, 24:405-418.
[5] BLACHNIO J, PAWLAK W I. Damageability of gas turbine blades-evaluation of exhaust gas temperature in front of the turbine using a non-linear observer[M]. Poland:Intech Open Access Publisher, 2011.
[6] 李淑媛,郑运荣. 航空发动机涡轮叶片的超温失效分析[J]. 材料工程, 1983(6):47-49. LI S Y, ZHENG Y R. Failure analysis for an overheated aero-engine turbine blade[J]. Journal of Materials Engineering, 1983(6):47-49.
[7] BOGDAN M. An attempt of evaluation of overheating of gas turbine blades[J]. Journal of Polish CIMAC-Diagnosis, Reliability and Safety, 2008, 3(1):25-32.
[8] 赵文侠,李莹,范映伟,等. 涡扇发动机二级转子叶片超温断裂分析[J]. 材料工程, 2012(8):39-44. ZHAO W X, LI Y, FAN Y W, et al. Fracture analysis for second stage rotor turbine blade in aero-engine[J]. Journal of Materials Engineering, 2012(8):39-44.
[9] 蔡玉林,郑运荣. 高温合金的金相研究[M]. 北京:国防工业出版社, 1996:228. CAI Y L, ZHENG Y R. Metallographic research of superalloys[M]. Beijing:National Defence Industry Press, 1996:228.
[10] CHEN Y, ZHENG Y, XIAO C, et al. Evaluation of temperature and stress in first stage high pressure turbine blades of a directionally, solidified superalloy DZ125 after service in aeroengines[C]//Superalloys 2016:proceedings of the 13th Intenational Symposium of Superalloys. New Jersey:John Wiley & Sons Inc, 2016:701-710.
[11] SUN W, QIN X, GUO J, et al. Thermal stability of primary MC carbide and its influence on the performance of cast Ni-base superalloys[J]. Materials & Design, 2015, 69:81-88.
[12] QIN X Z, GUO J T, YUAN C, et al. Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy[J]. Materials Science and Engineering:A, 2008, 485(1/2):74-79.
[13] QIN X Z, GUO J T, YUAN C, et al. Degeneration of primary MC carbide in a cast Ni-base superalloy[J]. Materials Science Forum, 2007, (546/549):1301-1304.
[14] YUAN X F, SONG J X, ZHENG Y R, et al. Quantitative microstructural evolution and corresponding stress rupture property of K465 superalloy[J]. Materials Science and Engineering:A, 2016, 651:734-744.
[15] YUAN X F, SONG J X, ZHENG Y R, et al. Abnormal stress rupture property in K465 superalloy caused by microstructural degradation at 975℃/225 MPa[J]. Journal of Alloys and Compounds, 2016, 662:583-592.
[16] 童锦艳,冯微,付超,等. GH4033合金短时超温后的显微组织损伤及力学性能[J]. 金属学报, 2015, 51(10):1242-1252. TONG J Y, FENG W, FU C, et al. Microstructural degradation and mechanical properties of GH4033 alloy after overheating for short time[J]. Acta Metallurgica Sinica, 2015, 51(10):1242-1252.
[17] GUO X, ZHENG W, XIAO C, et al. Evaluation of microstructural degradation in a failed gas turbine blade due to overheating[J]. Engineering Failure Analysis, 2019, 103:308-318.
[18] GIRAUD R, HERVIER Z, CORMIER J, et al. Strain effect on the γ' dissolution at high temperatures of a nickel-based single crystal superalloy[J]. Metallurgical and Materials Transactions:A, 2013, 44(1):131-146.
[19] 郭小童,郑为为,肖程波,等. K465高温合金短时超温后的显微组织退化及拉伸性能[J]. 材料工程, 2018, 46(10):81-90. GUO X T, ZHENG W W, XIAO C B, et al. Microstructural degradation and tensile properties of K465 equiaxed-cast superalloy after short-time overheating[J]. Journal of Materials Engineering, 2018, 46(10):81-90.
[20] MASOUMI F, SHAHRIARI D, JAHAZI M, et al. Kinetics and mechanisms of γ' reprecipitation in a Ni-based superalloy[J]. Scientific Reports, 2016, 6:28650.
[21] LE GRAVEREND J B, DIRAND L, JACQUES A, et al. In situ measurement of the γ/γ' lattice mismatch evolution of a nickel-based single-crystal superalloy during non-isothermal very high-temperature creep experiments[J]. Metallurgical and Materials Transactions:A, 2012, 43(11):3946-3951.
[22] LIU S Z, SHI Z X, HAN M, et al. Microstructure evolution and stress rupture properties of DD6 single crystal superalloy after overheating[J]. Materials Science Forum, 2017,898:517-522.
[23] TONG J, YAGI K, ZHENG Y, et al. Microstructural degradation and its corresponding mechanical property of wrought superalloy GH4037 caused by very high temperature[J]. Journal of Alloys and Compounds, 2017, 690:542-552.
[24] 孙智君. 航空用K23合金超温状态对显微组织和性能的影响[D]. 西安:西北工业大学, 2005. SUN Z J. Effect of overtemperature on microstructure and properties of aviation K23 alloy[D]. Xi'an:Northwestern Polytechnical University, 2005.
[25] 郑运荣. DZ22定向高温合金的初熔及其控制[J]. 航空学报, 1986, 7(5):482-489. ZHENG Y R. Incipient melting and its control in a directionally solidified nickel-base superalloy DZ22[J]. Acta Aeronautica et Astronautica Sinica, 1986, 7(5):482-489.
[26] YUAN X F, WU J T, LI J T, et al. Effects of initial microstructures on the microstructural evolution and corresponding mechanical property of K424 superalloy after overheating exposure[J]. Materials Science and Engineering:A,2019,743:40-56.
[27] 孙克君,盖秀颖,李晨希,等. GH864合金在超温条件下碳化物含量与持久强度的关系[J]. 理化检验(物理分册), 2009, 45(7):393-396. SUN K J, GAI X Y, LI C X, et al. Relationship between carbide content and creep rupture strength of GH864 alloy at overheated temperature[J]. Physical Testing and Chemical Analysis (Physical Testing), 2009, 45(7):393-396.
[28] KAZANSKⅡ D A, KLYPINA A M, CHISTYAKOVA L D. Estimating the influence of short-term overheatings on the structure and properties of the metal of blades made of IN 738 and IN 792 cast nickel alloys[J]. Thermal Engineering, 2011, 58(6):519-525.
[29] CORMIER J. Thermal cycling creep resistance of Ni-based single crystal superalloys[C]//Superalloys 2016:Proceedings of the 13th Intenational Symposium of Superalloys. New Jersey:John Wiley & Sons Inc, 2016:385-394.
[30] ROWE J P, FREEMAN J W. Effect of overheating on the creep-rupture properties of HS-31 alloy at 15000°F[R]. Michigan:University of Michigan, 1956, 30(38):9319-9327.
[31] ROWE J P, VOORHEES H R, FREEMAN J W. Effect of over-heating on the creep-rupture properties of Unimet 500 alloys at 1600°F and 28000 psi:final report to the general electric company aircraft gas turbine division[R]. Michigan:University of Michigan, 1957:1-35.
[32] ROEW J P, FREEMAN J W. Effect of overheating on creep-rupture properties of M252 and Inconel 700 alloys at 1500 and 1600°F:final report to national aeronautics and space administration[R]. Washington DC:National Aeronautics and Space Administration, 1960:1-63.
[33] ROEW J P, FREEMAN J W. Relations between microstructure and creep-rupture properties of nickel-base alloys as revealed by overtemperature exposures[R]. Washington, DC:National Aeronautics and Space Administration, 1961:1-154.
[34] WEISS I, ROSEN A, BRANDON D. Creep of udimet 500 during thermal cycling:Ⅰ the minimum creep rate[J]. Metallurgical Transactions:A, 1975, 6(4):761-766.
[35] WEISS I, ROSEN A, BRANDON D. Creep of udimet 500 during thermal cycling:Ⅱ the time to failure[J]. Metallurgical Transactions:A, 1975, 6(4):767-772.
[36] LE GRAVEREND J B, JACQUES A, CORMIER J, et al. Creep of a nickel-based single-crystal superalloy during very high-temperature jumps followed by synchrotron X-ray diffraction[J]. Acta Materialia, 2015, 84:65-79.
[37] STEUER S, HERVIER Z, THABART S, et al. Creep behavior under isothermal and non-isothermal conditions of AM3 single crystal superalloy for different solutioning cooling rates[J]. Materials Science and Engineering:A, 2014, 601:145-152.
[38] GOTI R, VIGUIER B, CRABOS F. Effect of thermal cycling on high temperature creep of coated CMSX-4[C]//Superalloys 2012:Proceedings of the 12th Intenational Symposium of Superalloys. New Jersey:John Wiley & Sons Inc, 2012:411-419.
[39] GIRAUD R, CORMIER J, HERVIER Z, et al. Effect of the prior microstructure degradation on the high temperature/low stress non-isothermal creep behavior of CMSX-4© Ni-based single crystal superalloy[C]//Superalloys 2012:Proceedings of the 12th Intenational Symposium of Superalloys. New Jersey:John Wiley & Sons Inc, 2012:265-274.
[40] VIGUIER B, TOURATIER F, ANDRIEU E. High-temperature creep of single-crystal nickel-based superalloy:microstructural changes and effects of thermal cycling[J]. Philosophical Magazine, 2011, 91(35):4427-4446.
[41] TOURATIER F, VIGUIER B, SIRET C, et al. Dislocation mechanisms during high temperature creep experiments on MC2 alloy[J]. Advanced Materials Research, 2011, 278:7-12.
[42] RAFFAITIN A, MONCEAU D, CRABOS F, et al. The effect of thermal cycling on the high-temperature creep behaviour of a single crystal nickel-based superalloy[J]. Scripta Materialia, 2007, 56(4):277-280.
[43] CORMIER J, MILHET X, MENDEZ J. Effect of very high temperature short exposures on the dissolution of the γ' phase in single crystal MC2 superalloy[J]. Journal of Materials Science, 2007, 42(18):7780-7786.
[44] CORMIER J, MILHET X, MENDEZ J. Non-isothermal creep at very high temperature of the nickel-based single crystal superalloy MC2[J]. Acta Materialia, 2007, 55:6250-6259.
[45] CORMIER J, MILHET X, CHAMPION J L, et al. Simulation of very high temperature overheating during isothermal creep of single crystal Ni-base superalloy[J]. Advanced Engineering Materials, 2008, 10(1/2):56-61.
[46] CORMIER J, MILHET X, VOGEL F, et al. Non-isothermal creep behavior of a second generation Ni-based single crystal superalloy:experimental characterization and modeling[C]//Superalloys 2008:Proceedings of the 11th Intenational Symposium of Superalloys. New Jersey:John Wiley & Sons Inc, 2008:941-949.
[47] CORMIER J, JOUIAD M, HAMON F, et al. Very high temperature creep behavior of a single crystal Ni-based superalloy under complex thermal cycling conditions[J]. Philosophical Magazine Letters, 2010, 90:611-620.
[48] LE GRAVEREND J B, CORMIER J, JOUIAD M, et al. Effect of fine γ' precipitation on non-isothermal creep and creep-fatigue behaviour of nickel base superalloy MC2[J]. Materials Science and Engineering:A, 2010, 527(20):5295-5302.
[49] MILHET X, CORMIER J, ORGANISTA A. On the role of the internal stress during non-isothermal creep life of a first generation nickel based single crystal superalloy[J]. Materials Science and Engineering:A, 2010, 527(9):2280-2288.
[50] YUAN X, AN W, JU Y, et al. Evaluation of microstructural degradation and its corresponding creep property in integral cast turbine rotor made of K424 alloy[J]. Materials Characterization, 2019, 158:109946.
[51] SUZUKI A, INUI H, POLLOCK T M. L12-strengthened cobalt-base superalloys[J]. Annual Review of Materials Research, 2015, 45(1):345-368.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[3] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[4] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[5] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[10] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[11] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[12] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[13] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[14] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[15] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn