1 Mechanical Engineering College, Xi'an Shiyou University, Xi'an 710065, China 2 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
In order to prepare low expansion, high strength and light weight composites, ZrW2O8-Cf/E51 composites were prepared by compression molding method, and the effects of ultrasonic time on its microstructure, thermal expansion behavior and ultimate tensile strength were studied. The results show that the agglomerated particles will be blocked by the fibers and gather on the surface of fiber bundles during the preparation. Within 20 minutes, the agglomeration of ZrW2O8 particles can be reduced by prolonging the ultrasonic time. With the decrease of particle agglomeration, the fracture surface of the composites will be changed from plane without fiber pull-out to uneven with fiber pull-out. During the thermal expansion process, the dL/L0of ZrW2O8-Cf/E51 composites show three stages: increase, decrease and slow increase under the combined action of carbon fiber and ZrW2O8 particles. When ultrasonic time increases from 5 min to 20 min, the average thermal expansion coefficient of ZrW2O8-Cf/E51 composites decreases by about 130%, and the ultimate tensile strength increases by about 8%.
Fig.2 不同超声时间ZrW2O8/E51复合材料的微观组织(a)5 min;(b)10 min;(c)15 min;(d)20 min
Fig.3 不同超声时间ZrW2O8-Cf/E51复合材料的微观组织(a)5 min;(b)10 min;(c)15 min;(d)20 min
Fig.4 复合材料热膨胀过程中应力和应变示意图 (a)基体的应力;(b)试样的应变
Ultrasonic time
Point A
Point C
Point D
Point E
T/℃
(dL/L0)/10-4
α/10-6 ℃-1
T/℃
(dL/L0)/10-4
α/10-6 ℃-1
T/℃
(dL/L0)/10-4
α/10-6 ℃-1
T/℃
(dL/L0)/10-4
α/10-6 ℃-1
5
30
0.64
12.70
48.61
2.66
11.30
73.90
0.92
1.89
100
1.74
2.32
10
30
0.54
10.80
46.94
2.28
10.40
75.41
0.19
0.38
100
0.68
0.90
15
30
0.49
9.76
45.83
1.94
9.29
79.48
-0.26
-0.48
100
0.10
0.13
20
30
0.39
7.87
40.17
0.95
6.27
79.59
-0.80
-1.47
100
-0.53
-0.79
Table 3 不同超声时间ZrW2O8-Cf/E51复合材料的热性能
Fig.5 团聚颗粒的微观照片
Fig.6 不同超声时间下ZrW2O8-Cf/E51复合材料的拉伸强度
Fig.7 不同超声时间下ZrW2O8-Cf/E51的拉伸断口形貌(a)5 min;(b)10 min;(c)15 min;(d)20 min
Fig.8 纤维拔出示意图[19]
1
MONROE J A , GEHRING D , KARAMAN I , et al. Tailored thermal expansion alloys[J]. Acta Materialia, 2016, 102, 333- 341.
doi: 10.1016/j.actamat.2015.09.012
2
AI L , GAO X L . Metamaterials with negative Poisson's ratio and non-positive thermal expansion[J]. Composite Structures, 2017, 162, 70- 84.
doi: 10.1016/j.compstruct.2016.11.056
WEI K , PEI Y M . Development of designing lightweight composites and structures for tailorable thermal expansion[J]. Chinese Science Bulletin, 2017, 62 (1): 47- 60.
ZHANG D , TAN Z Q , XIONG D B , et al. Application and prospect of metal matrix composites for thermal management: an overview[J]. Materials China, 2019, 12, 994- 1001.
5
XIN H , LIU Y , MOSALLAM A S , et al. Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates[J]. Composite Structures, 2017, 182, 283- 300.
doi: 10.1016/j.compstruct.2017.09.006
6
SONG M H , ZHANG Y , LI Y C , et al. Analyzing hysteresis and thermal expansion coefficient of M40/AZ91D during thermal cycling[J]. Materials Science Forum, 2017, 898, 890- 897.
doi: 10.4028/www.scientific.net/MSF.898.890
7
ASWATH R , ROYAN J D M , VEERAN S , et al. Minimization of thermal expansion of symmetric, balanced, angle ply laminates by optimization of fiber path configurations[J]. Composites Science and Technology, 2011, 71 (8): 1105- 1109.
doi: 10.1016/j.compscitech.2011.03.016
8
PRAVEEN R S , JACOB S , MURTHY C R L , et al. Hybridization of carbon-glass epoxy composites: an approach to achieve low coefficient of thermal expansion at cryogenic temperatures[J]. Cryogenics, 2011, 51 (2): 95- 104.
doi: 10.1016/j.cryogenics.2010.12.003
9
YAN J , SUN Y , WANG C , et al. Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature[J]. Scripta Materialia, 2014, 84/85, 19- 22.
doi: 10.1016/j.scriptamat.2014.04.010
10
WU Y , WANG M , CHEN Z , et al. The effect of phase transformation on the thermal expansion property in Al/ZrWO composites[J]. Journal of Materials Science, 2013, 48 (7): 2928- 2933.
doi: 10.1007/s10853-012-6933-x
11
LV J , CAI X , YE Q , et al. Significant improvement in the interface thermal conductivity of graphene-nanoplatelets silicone composite[J]. Materials Research Express, 2018, 5 (5): 055606.
doi: 10.1088/2053-1591/aac46e
QI R Q , LI W J , LIAN H , et al. Preparation and thermal expansion properties of Zr2P2WO12/Fe-Ni composite[J]. Journal of Materials Engineering, 2016, 44 (12): 61- 66.
13
LIU X S , CHENG F X , WANG J Q , et al. The control of thermal expansion and impedance of Al-Zr2(WO4)(PO4)2 nano-cermets for near-zero-strain Al alloy and fine electrical components[J]. Journal of Alloys and Compounds, 2013, 553, 1- 7.
doi: 10.1016/j.jallcom.2012.11.010
14
MARY T A , EVANS J S O , SLEIGHT A W , et al. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8[J]. Science, 1996, 272, 90- 92.
doi: 10.1126/science.272.5258.90
15
BAISE M , MAFFETTONE P M , TROUSSELET F , et al. Negative hydration expansion in ZrW2O8:microscopic mechanism, spaghetti dynamics, and negative thermal expansion[J]. Physical Review Letters, 2018, 120 (26): 265501.
doi: 10.1103/PhysRevLett.120.265501
YANG C , LI J P , YI F J , et al. Phase decomposition and solid phase synthesis of ZrW2O8 with negative thermal expansion[J]. Rare Metal Materials and Engineering, 2018, 47 (Suppl 1): 67- 71.
SUN X J , CHENG X N , YANG J , et al. Effect of PVP on morphology and property of negative thermal expansion ZrW2O8 powders by sol-gel method[J]. Journal of Materials Engineering, 2017, 45 (12): 77- 82.
LU G F , QIAO S R . Influence of Si-O-C interlayer on mechanical properties and thermal expansion properties of C/SiC-N composites[J]. Journal of Materials Engineering, 2018, 46 (7): 83- 87.
19
HSUEH C H . Crack-wake interfacial debonding criteria for fiber-reinforced ceramic composites[J]. Acta Materialia, 1996, 44 (6): 2211- 2216.
doi: 10.1016/1359-6454(95)00369-X