Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 171-178    DOI: 10.11868/j.issn.1001-4381.2020.000146
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
ZrW2O8-Cf/E51低/负热膨胀复合材料制备及超声时间对其热膨胀和力学性能的影响
鞠录岩1,*(), 张建兵1, 马玉钦2, 张钊源1, 魏文澜1
1 西安石油大学 机械工程学院, 西安 710065
2 西安电子科技大学 机电工程学院, 西安 710071
Preparation of ZrW2O8-Cf/E51 low/negative CTE composites and effect of ultrasonic time on its thermal and mechanical property
Luyan JU1,*(), Jianbing ZHANG1, Yuqin MA2, Zhaoyuan ZHANG1, Wenlan WEI1
1 Mechanical Engineering College, Xi'an Shiyou University, Xi'an 710065, China
2 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
全文: PDF(9710 KB)   HTML ( 5 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了制备低膨胀、高强、轻质复合材料,采用模压法制备了ZrW2O8-Cf/E51复合材料,并研究了超声时间对其微观组织、热膨胀行为和极限抗拉强度的影响。结果表明:在制备过程中颗粒团聚后容易受到纤维单丝阻挡并在纤维束表面聚集。在20 min之内,延长超声时间会减少ZrW2O8颗粒团聚。随着颗粒团聚的减少,复合材料断口会由平面状、无纤维拔出变为台阶状、有纤维拔出。在碳纤维和ZrW2O8颗粒的综合作用下,ZrW2O8-Cf/E51复合材料在热膨胀过程中膨胀量dL/L0会出现增大、减小和缓慢上升三个阶段,平均热膨胀系数也会出现相应的三个阶段。超声时间从5 min延长到20 min,ZrW2O8-Cf/E51复合材料的平均热膨胀系数降低了约130%,极限抗拉强度提高了约8%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鞠录岩
张建兵
马玉钦
张钊源
魏文澜
关键词 低/负热膨胀复合材料钨酸锆颗粒碳纤维    
Abstract

In order to prepare low expansion, high strength and light weight composites, ZrW2O8-Cf/E51 composites were prepared by compression molding method, and the effects of ultrasonic time on its microstructure, thermal expansion behavior and ultimate tensile strength were studied. The results show that the agglomerated particles will be blocked by the fibers and gather on the surface of fiber bundles during the preparation. Within 20 minutes, the agglomeration of ZrW2O8 particles can be reduced by prolonging the ultrasonic time. With the decrease of particle agglomeration, the fracture surface of the composites will be changed from plane without fiber pull-out to uneven with fiber pull-out. During the thermal expansion process, the dL/L0of ZrW2O8-Cf/E51 composites show three stages: increase, decrease and slow increase under the combined action of carbon fiber and ZrW2O8 particles. When ultrasonic time increases from 5 min to 20 min, the average thermal expansion coefficient of ZrW2O8-Cf/E51 composites decreases by about 130%, and the ultimate tensile strength increases by about 8%.

Key wordslow/negative thermal expansion    composites    ZrW2O8 particle    carbon fiber
收稿日期: 2020-02-24      出版日期: 2023-01-16
中图分类号:  TB332  
  TB35  
基金资助:国家自然科学基金青年项目(51905426);国家自然科学基金面上项目(51974251);国家自然科学基金面上项目(51974246);陕西省教育厅专项科研计划项目(19JK0671);陕西省自然科学基础研究计划项目(2020JQ-782)
通讯作者: 鞠录岩     E-mail: yan885858@163.com
作者简介: 鞠录岩(1986-), 男, 讲师, 博士, 研究方向为低膨胀复合材料设计、制备及性能研究, 联系地址: 陕西省西安市雁塔区电子二路东段18号西安石油大学机械工程学院(710065), E-mail: yan885858@163.com
引用本文:   
鞠录岩, 张建兵, 马玉钦, 张钊源, 魏文澜. ZrW2O8-Cf/E51低/负热膨胀复合材料制备及超声时间对其热膨胀和力学性能的影响[J]. 材料工程, 2023, 51(1): 171-178.
Luyan JU, Jianbing ZHANG, Yuqin MA, Zhaoyuan ZHANG, Wenlan WEI. Preparation of ZrW2O8-Cf/E51 low/negative CTE composites and effect of ultrasonic time on its thermal and mechanical property. Journal of Materials Engineering, 2023, 51(1): 171-178.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000146      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/171
EL/GPa ET/GPa αL/10-6-1 αT/10-6-1 ν
230 8.2 -0.83 10 0.25
Table 1  T700碳纤维性能参数
Al K Ca Fe Ni Cu Hf
0.058 0.014 0.053 0.013 0.018 0.023 0.035
Table 2  ZrW2O8颗粒杂质的化学成分(质量分数/%)
Fig.1  ZrW2O8-Cf/E51复合材料制备工艺流程
Fig.2  不同超声时间ZrW2O8/E51复合材料的微观组织(a)5 min;(b)10 min;(c)15 min;(d)20 min
Fig.3  不同超声时间ZrW2O8-Cf/E51复合材料的微观组织(a)5 min;(b)10 min;(c)15 min;(d)20 min
Fig.4  复合材料热膨胀过程中应力和应变示意图
(a)基体的应力;(b)试样的应变
Ultrasonic time Point A Point C Point D Point E
T/℃ (dL/L0)/10-4 α/10-6
-1
T/℃ (dL/L0)/10-4 α/10-6
-1
T/℃ (dL/L0)/10-4 α/10-6
-1
T/℃ (dL/L0)/10-4 α/10-6
-1
5 30 0.64 12.70 48.61 2.66 11.30 73.90 0.92 1.89 100 1.74 2.32
10 30 0.54 10.80 46.94 2.28 10.40 75.41 0.19 0.38 100 0.68 0.90
15 30 0.49 9.76 45.83 1.94 9.29 79.48 -0.26 -0.48 100 0.10 0.13
20 30 0.39 7.87 40.17 0.95 6.27 79.59 -0.80 -1.47 100 -0.53 -0.79
Table 3  不同超声时间ZrW2O8-Cf/E51复合材料的热性能
Fig.5  团聚颗粒的微观照片
Fig.6  不同超声时间下ZrW2O8-Cf/E51复合材料的拉伸强度
Fig.7  不同超声时间下ZrW2O8-Cf/E51的拉伸断口形貌(a)5 min;(b)10 min;(c)15 min;(d)20 min
Fig.8  纤维拔出示意图[19]
1 MONROE J A , GEHRING D , KARAMAN I , et al. Tailored thermal expansion alloys[J]. Acta Materialia, 2016, 102, 333- 341.
doi: 10.1016/j.actamat.2015.09.012
2 AI L , GAO X L . Metamaterials with negative Poisson's ratio and non-positive thermal expansion[J]. Composite Structures, 2017, 162, 70- 84.
doi: 10.1016/j.compstruct.2016.11.056
3 韦凯, 裴永茂. 轻质复合材料及结构热膨胀调控设计研究进展[J]. 科学通报, 2017, 62 (1): 47- 60.
3 WEI K , PEI Y M . Development of designing lightweight composites and structures for tailorable thermal expansion[J]. Chinese Science Bulletin, 2017, 62 (1): 47- 60.
4 张荻, 谭占秋, 熊定邦, 等. 热管理用金属基复合材料的应用现状及发展趋势[J]. 中国材料进展, 2019, 12, 994- 1001.
4 ZHANG D , TAN Z Q , XIONG D B , et al. Application and prospect of metal matrix composites for thermal management: an overview[J]. Materials China, 2019, 12, 994- 1001.
5 XIN H , LIU Y , MOSALLAM A S , et al. Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates[J]. Composite Structures, 2017, 182, 283- 300.
doi: 10.1016/j.compstruct.2017.09.006
6 SONG M H , ZHANG Y , LI Y C , et al. Analyzing hysteresis and thermal expansion coefficient of M40/AZ91D during thermal cycling[J]. Materials Science Forum, 2017, 898, 890- 897.
doi: 10.4028/www.scientific.net/MSF.898.890
7 ASWATH R , ROYAN J D M , VEERAN S , et al. Minimization of thermal expansion of symmetric, balanced, angle ply laminates by optimization of fiber path configurations[J]. Composites Science and Technology, 2011, 71 (8): 1105- 1109.
doi: 10.1016/j.compscitech.2011.03.016
8 PRAVEEN R S , JACOB S , MURTHY C R L , et al. Hybridization of carbon-glass epoxy composites: an approach to achieve low coefficient of thermal expansion at cryogenic temperatures[J]. Cryogenics, 2011, 51 (2): 95- 104.
doi: 10.1016/j.cryogenics.2010.12.003
9 YAN J , SUN Y , WANG C , et al. Study of structure of Mn3Cu0.5Ge0.5N/Cu composite with nearly zero thermal expansion behavior around room temperature[J]. Scripta Materialia, 2014, 84/85, 19- 22.
doi: 10.1016/j.scriptamat.2014.04.010
10 WU Y , WANG M , CHEN Z , et al. The effect of phase transformation on the thermal expansion property in Al/ZrWO composites[J]. Journal of Materials Science, 2013, 48 (7): 2928- 2933.
doi: 10.1007/s10853-012-6933-x
11 LV J , CAI X , YE Q , et al. Significant improvement in the interface thermal conductivity of graphene-nanoplatelets silicone composite[J]. Materials Research Express, 2018, 5 (5): 055606.
doi: 10.1088/2053-1591/aac46e
12 戚瑞琼, 李伟杰, 连虹, 等. Zr2P2WO12/Fe-Ni复合材料的制备及其热膨胀性能研究[J]. 材料工程, 2016, 44 (12): 61- 66.
12 QI R Q , LI W J , LIAN H , et al. Preparation and thermal expansion properties of Zr2P2WO12/Fe-Ni composite[J]. Journal of Materials Engineering, 2016, 44 (12): 61- 66.
13 LIU X S , CHENG F X , WANG J Q , et al. The control of thermal expansion and impedance of Al-Zr2(WO4)(PO4)2 nano-cermets for near-zero-strain Al alloy and fine electrical components[J]. Journal of Alloys and Compounds, 2013, 553, 1- 7.
doi: 10.1016/j.jallcom.2012.11.010
14 MARY T A , EVANS J S O , SLEIGHT A W , et al. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8[J]. Science, 1996, 272, 90- 92.
doi: 10.1126/science.272.5258.90
15 BAISE M , MAFFETTONE P M , TROUSSELET F , et al. Negative hydration expansion in ZrW2O8:microscopic mechanism, spaghetti dynamics, and negative thermal expansion[J]. Physical Review Letters, 2018, 120 (26): 265501.
doi: 10.1103/PhysRevLett.120.265501
16 杨程, 李金平, 易法军, 等. 负热膨胀ZrW2O8相变分解和固相合成反应的研究[J]. 稀有金属材料与工程, 2018, 47 (增刊1): 67- 71.
16 YANG C , LI J P , YI F J , et al. Phase decomposition and solid phase synthesis of ZrW2O8 with negative thermal expansion[J]. Rare Metal Materials and Engineering, 2018, 47 (Suppl 1): 67- 71.
17 孙秀娟, 程晓农, 杨娟, 等. PVP对溶胶凝胶法制备负热膨胀ZrW2O8粉体形貌及性能的影响[J]. 材料工程, 2017, 45 (12): 77- 82.
17 SUN X J , CHENG X N , YANG J , et al. Effect of PVP on morphology and property of negative thermal expansion ZrW2O8 powders by sol-gel method[J]. Journal of Materials Engineering, 2017, 45 (12): 77- 82.
18 卢国锋, 乔生儒. Si-O-C界面层对C/SiC-N复合材料力学性能和热膨胀性能的影响[J]. 材料工程, 2018, 46 (7): 83- 87.
18 LU G F , QIAO S R . Influence of Si-O-C interlayer on mechanical properties and thermal expansion properties of C/SiC-N composites[J]. Journal of Materials Engineering, 2018, 46 (7): 83- 87.
19 HSUEH C H . Crack-wake interfacial debonding criteria for fiber-reinforced ceramic composites[J]. Acta Materialia, 1996, 44 (6): 2211- 2216.
doi: 10.1016/1359-6454(95)00369-X
[1] 熊京鹏, 刘勇. 镁基复合材料界面调控研究进展[J]. 材料工程, 2023, 51(1): 1-15.
[2] 李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博. CNTs/Mg-9Al复合材料微观组织、力学及导热性能[J]. 材料工程, 2023, 51(1): 26-35.
[3] 吴立清, 冯柳, 毛晓璇, 穆洪亮, 刘志超, 牛金叶, 高蔷. 量子点/碳复合材料在碱金属离子电池的应用进展[J]. 材料工程, 2023, 51(1): 36-51.
[4] 王宪, 贺雍律, 唐俊, 刘钧, 黄贤俊, 翟多才, 张鉴炜. Al颗粒夹层CFRP复合材料力学及电磁屏蔽性能[J]. 材料工程, 2023, 51(1): 140-147.
[5] 曾宏伟, 李红, 姚彧敏, 杨敏, 陶银萍, 任慕苏, 孙晋良. 热解碳含量对碳/碳-聚酰亚胺复合材料性能的影响[J]. 材料工程, 2023, 51(1): 148-154.
[6] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[7] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[8] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[9] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[10] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[11] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[12] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[13] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[14] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[15] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn