Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (11): 116-123    DOI: 10.11868/j.issn.1001-4381.2020.000152
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光选区熔化AlSi7MgTi合金显微组织与性能
唐鹏钧1,2, 房立家3, 杨斌1,2, 陈冰清1, 李沛勇1,2, 张学军1,3
1. 中国航发北京航空材料研究院, 北京 100095;
2. 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095;
3. 航发优材(镇江)增材制造有限公司, 江苏 镇江 212132
Microstructure and properties of selective laser melting AlSi7MgTi alloy
TANG Peng-jun1,2, FANG Li-jia3, YANG Bin1,2, CHEN Bing-qing1, LI Pei-yong1,2, ZHANG Xue-jun1,3
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China;
3. HFYC(Zhenjiang) Additive Manufacturing Co., Ltd., Zhenjiang 212132, Jiangsu, China
全文: PDF(5734 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用超音速气体雾化设备制备AlSi7MgTi合金粉末,利用激光选区熔化技术将其制成试块,并进行T6热处理。利用光学显微镜、扫描电子显微镜、X射线衍射仪、拉曼光谱仪和拉伸实验研究成形态与T6态合金的显微组织、相组成、残余应力和力学性能。结果表明:成形态合金由过饱和α(Al)固溶体和Si相组成,组织形貌呈现出"鱼鳞状"熔池逐层堆叠和相互交织的特征,并表现出明显的各向异性。此外,Si相以网状共晶硅的形式存在,由块状和纤维状的共晶硅相互连接而成。熔池边界附近的共晶硅相对粗大,熔池内部的则较为细小。T6热处理促使合金中Si相析出,导致共晶硅发生Ostwald粗化,基本消除了熔池形貌和网状共晶硅组织,并使残余应力显著降低。成形态合金的抗拉强度与屈服强度分别达到420~430 MPa和280~300 MPa,伸长率为5.1%~11.0%;T6热处理后合金的抗拉强度降至360 MPa左右,屈服强度与成形态相当,伸长率提升至15.2%~16.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐鹏钧
房立家
杨斌
陈冰清
李沛勇
张学军
关键词 激光选区熔化AlSi7MgTi合金T6热处理显微组织力学性能    
Abstract:The testing blocks of AlSi7MgTi alloy were prepared by selective laser melting (SLM) technique and T6 heat treatment using alloy powders fabricated by supersonic gas atomization equipment. The microstructure, phase composition, residual stress, and mechanical properties of as-built and T6 treated alloys were investigated by optical microscope,scanning electron microscope,X-ray diffractometer,Raman spectrometer and tensile tests, respectively. The results indicate that as-built alloy mainly consists of supersaturated α(Al) solid solution and Si phases. The microstructure characterized by layer-by-layer stacking and interlaced of "scale-like" melt pool, shows obvious anisotropy. In addition, Si phase exists in the form of cellular eutectic silicon, which is connected by blocky and fibrous eutectic silicon. The eutectic silicon near melt pool boundary is relatively thick, while it is smaller in interior of melt pool. T6 heat treatment promotes the precipitation of Si phases, and leads to the Ostwald coarsening of eutectic silicon. Meanwhile, the melt pool morphologies and cellular eutectic silicon structure are basically eliminated by T6 heat treatment. Additionally, the residual stress is significantly reduced after heat treatment. The tensile strength and yield strength of as-built alloy reach up to 420-430 MPa and 280-300 MPa respectively, with elongation of 5.1%-11.0%. However, the tensile strength of T6 heat treated alloy is reduced to about 360 MPa, and yield strength is almost equal to that of as-built alloy, while elongation increases to 15.2%-16.5%.
Key wordsselective laser melting    AlSi7MgTi alloy    T6 heat treatment    microstructure    mechanical property
收稿日期: 2020-02-26      出版日期: 2020-11-20
中图分类号:  TG146.2+1  
基金资助: 
通讯作者: 陈冰清(1984-),女,研究员,博士,研究方向为增材制造,联系地址:北京市81信箱23分箱(100095),E-mail:hwtkjcbq1984@163.com     E-mail: hwtkjcbq1984@163.com
引用本文:   
唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
TANG Peng-jun, FANG Li-jia, YANG Bin, CHEN Bing-qing, LI Pei-yong, ZHANG Xue-jun. Microstructure and properties of selective laser melting AlSi7MgTi alloy. Journal of Materials Engineering, 2020, 48(11): 116-123.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000152      或      http://jme.biam.ac.cn/CN/Y2020/V48/I11/116
[1] 张学军,唐思熠,肇恒跃,等.3D打印技术研究现状和关键技术[J].材料工程,2016,44(2):122-128. ZHANG X J,TANG S Y,ZHAO H Y,et al.Research status and key technologies of 3D printing[J].Journal of Materials Engineering,2016,44(2):122-128.
[2] READ N,WANG W,ESSA K,et al.Selective laser melting of AlSi10Mg alloy:process optimization and mechanical properties development[J].Materials & Design,2015,65:417-424.
[3] TRADOWSKY U,WHITE J,WARD R M,et al.Selective laser melting of AlSi10Mg:influence of post-processing on the microstructural and tensile properties development[J].Materials & Design,2016,105:212-222.
[4] LI W,LI S,LIU J,et al.Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting:microstructure evolution, mechanical properties and fracture mechanism[J].Materials Science and Engineering:A,2016,663:116-125.
[5] ZOU J,ZHU Y,PAN M,et al.A study on cavitation erosion behavior of AlSi10Mg fabricated by selective laser melting (SLM)[J].Wear,2017,376/377:496-506.
[6] BRANDL E,HECKENBERGER U,HOLZINGER V,et al.Additive manufactured AlSi10Mg samples using selective laser melting (SLM):microstructure, high cycle fatigue, and fracture behavior[J].Materials & Design,2012,34:159-169.
[7] KIMURA T,NAKAMOTO T. Microstructures and mechanical properties of A356(AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting[J].Materials & Design,2016,89:1294-1301.
[8] RAO H,GIET S,YANG K,et al.The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting[J].Materials & Design,2016,109:334-346.
[9] WANG M,SONG B,WEI Q S,et al.Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy[J].Materials Science and Engineering:A,2019,739:463-472.
[10] 雷振坤,仇巍,亢一澜.微尺度拉曼光谱实验力学[M].北京:科学出版社,2015:217-222. LEI Z K,QIU W,KANG Y L.Micro-Raman spectrum and experimental mechanics[M].Beijing:Science Press,2015:217-222.
[11] MAAMOUN A H,ELBESTAWI M,DOSBAEVA G K,et al.Thermal post-processing of AlSi10Mg parts produced by selective laser melting using recycle powder[J].Additive Manufacturing,2018,21:234-247.
[12] ZHOU J,DUSZCZYK J,KOREVAAR B M.Structural characteristics of a nickel-modified Al-20Si-3Cu-1Mg alloy powder[J].Journal of Materials Science,1992,27:3341-3352.
[13] WEI P,WEI Z Y,CHEN Z,et al.Thermal behavior in single track during selective laser melting of AlSi10Mg powder[J].Applied Physics A,2017,123:604.
[14] 中国航空材料手册编辑委员会.中国航空材料手册第3卷:铝合金镁合金[M].2版.北京:中国标准出版社,2001:400. Editorial Board of China Aeronautical Materials Handbook.China aeronautical materials handbook volume 3:aluminum alloy and magnesium alloy[M].2nd ed.Beijing:Standards Press of China,2001:400.
[15] ROSENTHAL I,SHNECK R,STERN A.Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process[J].Materials Science and Engineering:A,2018,729:310-322.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[7] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[8] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[9] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[10] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[11] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[12] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[13] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[14] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[15] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn