Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (1): 133-143    DOI: 10.11868/j.issn.1001-4381.2020.000167
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
304不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能
王勉1,2, 刘秀波1,2,3,*(), 欧阳春生1,2, 罗迎社1,2, 陈德强4
1 中南林业科技大学 材料表界面科学与技术湖南省重点实验室, 长沙 410004
2 中南林业科技大学 工程流变学湖南省重点实验室, 长沙 410004
3 中国科学院兰州化学物理研究所 固体润滑国家重点实验室, 兰州 730000
4 河南科技大学 高端轴承摩擦学技术与应用国家地方联合工程实验室, 河南 洛阳 471003
Wide temperature range tribological performance of laser in-situ synthesized self-lubricating coating on 304 stainless steel
Mian WANG1,2, Xiu-bo LIU1,2,3,*(), Chun-sheng OUYANG1,2, Ying-she LUO1,2, De-qiang CHEN4
1 Hunan Province Key Laboratory of Materials Surface/Interface Science&Technology, Central South University of Forestry&Technology, Changsha 410004, China
2 Hunan Province Key Laboratory of Engineering Rheology, Central South University of Forestry&Technology, Changsha 410004, China
3 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
4 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science&Technology, Luoyang 471003, Henan, China
全文: PDF(20892 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

由于304不锈钢在中、高温下摩擦学性能较差,制约了其在重要摩擦运动副零部件上的应用。为改善304不锈钢的摩擦学性能,以Ni60粉末为增韧相,WS2为合成润滑相的前驱化合物,TiC为高硬度耐磨相,采用高能激光束在其表面原位合成自润滑耐磨复合涂层。利用X射线衍射仪、扫描电子显微镜、显微硬度计、摩擦磨损试验机和探针式材料表面磨痕测量仪表征涂层和基体的物相、微观结构、显微硬度与表面形貌,并系统研究涂层和基体在20,300,600,800℃下的摩擦学性能及其磨损机理。结果表明:涂层主要由Cr0.19Fe0.7Ni0.11,Ti2SC,Fe2C,Cr7C3,CrS和WS2组成;涂层的平均显微硬度(302.0HV0.5)略高于基体(257.2HV0.5),但涂层上部区域的硬度(425.4HV0.5)约为基体的1.65倍;涂层在所有等温摩擦学实验中摩擦因数和磨损率均低于基体,300℃时涂层润滑效果最好,摩擦因数为0.3031,600℃时涂层耐磨效果最好,磨损率为9.699×10-5 mm3·N-1·m-1

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王勉
刘秀波
欧阳春生
罗迎社
陈德强
关键词 304不锈钢激光原位合成自润滑复合涂层摩擦学性能    
Abstract

304 stainless steel has poor tribological properties at medium and high temperatures, severely limiting its application to the important frictional motion auxiliary parts. In order to improve the tribological properties of 304 stainless steel, Ni60 powder was used as toughening phase, WS2 acted as precursor for synthetic lubricating phase, TiC used as high-hardness and wear-resistant phase, and high-energy laser beam was used to in-situ synthesize a self-lubricating and anti-wear composite coating on its surface. The phase compositions, microstructure, microhardness and surface topogr-aphies of the coating and substrate were characterized by XRD, SEM, microhardness tester, friction and wear tester and the probe-type surface profilometer, and the tribological properties as well as the corresponding wear mechanisms of the coating and substrate at 20, 300, 600, 800 ℃ were systematically studied. Results indicate that the coating is mainly composed of Cr0.19Fe0.7Ni0.11, Ti2SC, Fe2C, Cr7C3, CrS and WS2. Although the average microhardness of the coating (302.0HV0.5) is slightly higher than that of the substrate (257.2HV0.5), the hardness of the upper region of the coating (425.4HV0.5) is about 1.65 times that of the substrate. The friction coefficients and wear rates of coating are lower than that of the substrate at all the isothermal tribological experiments. The coating possesses the best lubrication effect at 300 ℃ with friction coefficient of 0.3031, and the best wear resistance at 600 ℃ with a wear rate of 9.699×10-5 mm3·N-1·m-1.

Key words304 stainless steel    laser in-situ synthesis    self-lubricating    composite coating    tribological performance
收稿日期: 2020-03-02      出版日期: 2021-01-14
中图分类号:  TG174.44  
基金资助:国家自然科学基金(52075559);中国科学院兰州化学物理研究所固体润滑国家重点实验室开放基金(LSL-1802);辽宁省航发材料摩擦学重点实验室开放基金(LKLAMTF202101)
通讯作者: 刘秀波     E-mail: liuxiubosz@163.com
作者简介: 刘秀波(1968-), 男, 教授, 博士, 研究方向为表面工程与摩擦学以及激光加工, 联系地址:湖南省长沙市韶山南路498号中南林业科技大学材料表界面科学与技术湖南省重点实验室(410004), E-mail:liuxiubosz@163.com
引用本文:   
王勉, 刘秀波, 欧阳春生, 罗迎社, 陈德强. 304不锈钢激光原位合成自润滑涂层的宽温域摩擦学性能[J]. 材料工程, 2021, 49(1): 133-143.
Mian WANG, Xiu-bo LIU, Chun-sheng OUYANG, Ying-she LUO, De-qiang CHEN. Wide temperature range tribological performance of laser in-situ synthesized self-lubricating coating on 304 stainless steel. Journal of Materials Engineering, 2021, 49(1): 133-143.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000167      或      http://jme.biam.ac.cn/CN/Y2021/V49/I1/133
Material C Mn P Si Fe Cr S B Ni
Ni60 0.87 - - 4.47 5.97 15.97 - 3.29 Bal
304 stainless steel 0.051 0.79 0.029 0.56 Bal 17.92 0.009 - 8.77
Table 1  Ni60粉末和基体的化学成分(质量分数/%)
Fig.1  复合涂层表面(a)及横截面(b)的宏观形貌
Fig.2  复合涂层横截面微观形貌(a)及其放大图(b)
Fig.3  复合涂层与基体的XRD图谱
Fig.4  复合涂层的微观形貌
(a)上部区域; (b)中部区域; (c)底部区域; (d)结合区域
Area Ni Ti C W S Fe Cr
A 9.69 1.07 19.15 0.23 0.24 41.07 28.55
B 9.03 7.54 12.17 1.07 5.39 50.75 14.05
C 10.45 5.32 4.74 0.82 6.93 56.24 15.50
E 7.33 3.64 27.63 0.97 4.34 38.66 17.43
F 12.68 1.23 13.27 1.35 1.44 51.37 18.66
G 10.53 3.81 11.35 0.93 2.54 51.35 19.49
H 6.79 - 26.01 - - 54.17 13.03
Table 2  涂层不同区域的EDS分析(原子分数/%)
Fig.5  图 4中D区域的SEM高倍形貌及元素EDS图
Fig.6  涂层横截面的显微硬度曲线
Fig.7  复合涂层在600 ℃(a)与800 ℃(b)下的磨痕宏观形貌
Fig.8  不同温度下基体和涂层的平均摩擦因数(a)与磨损率(b)
Fig.9  不同温度磨损实验后基体(a)和复合涂层(b)的磨损表面轮廓
Fig.10  不同温度摩擦学实验后基体(1)和复合涂层(2)的磨损SEM形貌
(a)20 ℃; (b)300 ℃; (c)600 ℃; (d)800 ℃
Area Ni Ti C W S Fe Cr O
A 4.11 0.53 28.12 1.23 1.07 38.56 9.85 16.53
B 0.74 0.86 46.91 0.86 0.82 13.07 3.86 32.88
C 5.75 1.49 13.83 0.43 0.35 16.86 4.72 56.57
D 2.71 0.86 14.95 0.19 0.86 18.76 3.73 57.94
E 3.87 0.85 10.61 0.17 0.45 17.57 4.37 62.11
Table 3  图 10中不同磨损表面的EDS分析结果(原子分数/%)
Fig.11  不同温度摩擦学实验后基体(1)和复合涂层(2)的磨屑SEM形貌
(a)20 ℃; (b)300 ℃; (c)600 ℃; (d)800 ℃
Temperature/℃ Ni Ti C W S Fe Cr O
20 13.07 3.93 33.89 1.75 1.35 30.65 12.87 2.49
300 8.71 1.51 16.92 0.36 0.79 27.98 8.36 35.37
600 7.75 2.91 13.13 0.87 0.43 26.97 7.63 40.31
800 4.90 1.13 7.89 0.13 25.06 6.73 54.16
Table 4  不同温度摩擦学实验后复合涂层的磨屑EDS分析结果(原子分数/%)
Fig.12  不同温度摩擦学实验后涂层磨损表面XRD图谱
1 SUN G F , ZHANG Y K , ZHANG M K , et al. Microstructure and corrosion characteristics of 304 stainless steel laser-alloyed with Cr-CrB2[J]. Applied Surface Science, 2014, 295, 94- 107.
doi: 10.1016/j.apsusc.2014.01.011
2 CHEN P , LI J L , LI Y L . Effect of geometric micro-groove texture patterns on tribological performance of stainless steel[J]. Journal of Central South University, 2018, 25 (2): 331- 341.
doi: 10.1007/s11771-018-3740-9
3 XU J , WU X Q , HAN E H . Acoustic emission response of sensitized 304 stainless steel during intergranular corrosion and stress corrosion cracking[J]. Corrosion Science, 2013, 73, 262- 273.
doi: 10.1016/j.corsci.2013.04.014
4 陈小明, 王海金, 周夏凉, 等. 激光表面改性技术及其研究进展[J]. 材料导报, 2018, 32 (增刊1): 341- 344.
4 CHEN X M , WANG H J , ZHOU X L , et al. Laser surface modification technology and research progress[J]. Materials Review, 2018, 32 (Suppl 1): 341- 344.
5 卢云龙, 张培磊, 马凯, 等. 激光合金化Ni-W-Si涂层的组织与性能研究[J]. 稀有金属材料与工程, 2016, 45 (2): 375- 380.
5 LU Y L , ZHANG P L , MA K , et al. Microstructure and properties of laser alloying Ni-W-Si composite coating[J]. Rare Metal Materials and Engineering, 2016, 45 (2): 375- 380.
6 刘通, 孙桂芳, 张永康. 45#钢表面激光合金化NiCr-Al2O3涂层的组织及耐磨性能研究[J]. 表面技术, 2016, 45 (10): 64- 69.
6 LIU T , SUN G F , ZHANG Y K . Microstructure and wear resis-tance of NiCr-Al2O3 coating alloyed with 45# steel laser[J]. Surface Technology, 2016, 45 (10): 64- 69.
7 尹泉, 彭如恕, 朱红梅. 304不锈钢表面激光原位制备Ti(C, N)增强铁基涂层的组织和性能[J]. 热加工工艺, 2016, 45 (8): 165- 168.
7 YIN Q , PENG R S , ZHU H M . Microstructure and properties of Fe-based layer with in-situ Ti(C, N) strengthening particles on 304 stainless steel by laser cladding[J]. Hot Working Technology, 2016, 45 (8): 165- 168.
8 SONG L J , ZENG G C , XIAO H , et al. Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders[J]. Journal of Manufacturing Processes, 2016, 24, 116- 124.
doi: 10.1016/j.jmapro.2016.08.004
9 LU X L , LIU X B , YU P C , et al. Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding[J]. Applied Surface Science, 2015, 355, 350- 358.
doi: 10.1016/j.apsusc.2015.07.138
10 刘秀波, 刘海青, 孟祥军, 等. 激光熔覆NiCr/Cr2C3-WS2自润滑耐磨涂层的高温摩擦学行为[J]. 材料工程, 2013, (11): 26- 31.
doi: 10.3969/j.issn.1001-4381.2013.11.005
10 LIU X B , LIU H Q , MENG X J , et al. High temperature tribological behaviors of laser cladding NiCr/Cr2C3-WS2 self-lubrication wear-resistant coating[J]. Journal of Materials Engineering, 2013, (11): 26- 31.
doi: 10.3969/j.issn.1001-4381.2013.11.005
11 ANJANI K , RAKESH K R , ANIL K D . Mechanical characteristics of Ti-SiC metal matrix composite coating on AISI 304 steel by gas tungsten arc (GTA) coating process[J]. Materials Today:Proceedings, 2019, 17, 111- 117.
doi: 10.1016/j.matpr.2019.06.407
12 ABU-WARDA N , LÓPEZ A J , LÓPEZ M D , et al. High tempe-rature corrosion and wear behavior of HVOF-sprayed coating of Al2O3-NiAl on AISI 304 stainless steel[J]. Surface and Coatings Technology, 2019, 359, 35- 46.
doi: 10.1016/j.surfcoat.2018.12.047
13 陆小龙, 刘秀波, 余鹏程, 等. 后热处理对304不锈钢激光熔覆Ni60/h-BN自润滑耐磨复合涂层组织和摩擦学性能的影响[J]. 摩擦学学报, 2016, 36 (1): 48- 54.
13 LU X L , LIU X B , YU P C , et al. Effects of post heat-treatment on microstructure and tribological properties of Ni60/h-BN self-lubricating anti-wear composite coating on 304 stainless steel by laser cladding[J]. Tribology, 2016, 36 (1): 48- 54.
14 刘秀波, 乔世杰, 翟永杰, 等. TA2合金激光熔覆自润滑复合涂层组织与摩擦学性能[J]. 摩擦学学报, 2017, 37 (1): 75- 82.
14 LIU X B , QIAO S J , ZHAI Y J , et al. Microstructure and tribological properties of laser cladding self-lubricating anti-wear composite coatings on TA2 alloy[J]. Tribology, 2017, 37 (1): 75- 82.
15 刘秀波, 王勉, 乔世杰, 等. TA2合金激光熔覆钛基自润滑耐磨复合涂层的高温摩擦学性能[J]. 摩擦学学报, 2018, 38 (3): 283- 290.
15 LIU X B , WANG M , QIAO S J , et al. High temperature tribological properties of laser cladding titanium matrix self-lubricating wear resistant composite coating on TA2 alloy[J]. Tribology, 2018, 38 (3): 283- 290.
16 郑晨.激光熔覆NiCr/Cr3C2-WS2高温自润滑耐磨复合涂层研究[D].苏州: 苏州大学, 2013.
16 ZHENG C. Study of NiCr/Cr3C2-WS2 high-temperature self-lubricating wear-resistant composite coatings[D]. Suzhou: Soochow University, 2013.
17 秦红玲, 李雪飞, 朱合法, 等. 激光加工凹坑织构对赛龙表面润湿性的影响[J]. 华中科技大学学报(自然科学版), 2019, 47 (5): 39- 44.
17 QIN H L , LI X F , ZHU H F , et al. Influence of laser machining dimple texture on surface wettability of Thordon[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47 (5): 39- 44.
18 ZHAI Y J , LIU X B , QIAO S J , et al. Characteristics of laser clad α-Ti/TiC+(Ti, W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy[J]. Optics and Laser Technology, 2017, 89, 97- 107.
doi: 10.1016/j.optlastec.2016.09.044
19 AGARWAL A , DAHOTRE N B . Pulsed electrode surfacing of steel with TiC coating:microstructure and wear properties[J]. Journal of Materials Engineering and Performance, 1999, 8 (4): 479- 486.
doi: 10.1361/105994999770346800
20 LIU W J , JONAS J J , BOUCHARD D , et al. Gibbs energies of formation of TiS and Ti4C2S2 in austenite[J]. ISIJ International, 1990, 30 (11): 985- 990.
doi: 10.2355/isijinternational.30.985
21 翟永杰, 刘秀波, 乔世杰, 等. 热处理对TA2合金表面激光熔覆Ti2SC/TiS涂层组织和力学性能的影响[J]. 表面技术, 2017, 46 (6): 207- 214.
21 ZHAI Y J , LIU X B , QIAO S J , et al. Influence of heat treatment on microstructure and mechanical properties of laser cladding Ti2SC/TiS coating on TA2 alloy[J]. Surface Technology, 2017, 46 (6): 207- 214.
22 张晓琴, 于富成, 柴利强, 等. C/N共掺MoS2复合薄膜的微结构及其摩擦特性研究[J]. 摩擦学学报, 2017, 37 (4): 537- 543.
22 ZHANG X Q , YU F C , CHAI L Q , et al. Microstructure and tribological properties of C/N co-doping MoS2composite film[J]. Tribology, 2017, 37 (4): 537- 543.
23 王勇刚, 刘和剑, 回丽, 等. 激光熔覆原位自生碳化物增强自润滑耐磨复合涂层的高温摩擦学性能[J]. 材料工程, 2019, 47 (5): 72- 78.
23 WANG Y G , LIU H J , HUI L , et al. High temperature tribological properties of laser cladding in-situ carbide reinforced self-lubricating wear-resistant composite coating[J]. Journal of Materials Engineering, 2019, 47 (5): 72- 78.
24 周仲炎, 庄宿国, 杨霞辉, 等. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47 (3): 101- 108.
24 ZHOU Z Y , ZHUANG S G , YANG X H , et al. High temperature tribological properties of laser in-situ synthesized self-lubricating composite coating on Ti6Al4V alloy[J]. Journal of Materials Engineering, 2019, 47 (3): 101- 108.
25 相占凤.添加固体润滑剂hBN的钛合金激光熔覆高温耐磨复合涂层研究[D].苏州: 苏州大学, 2015.
25 XIANG Z F. Study of high temperature anti-wear composite coatings on titanium alloy with the addition of hBN[D]. Suzhou: Soochow University, 2015.
26 翟永杰, 乔世杰, 陆小龙, 等. 热处理对激光熔覆γ-(Ni, Fe)/CrB/hBN自润滑耐磨复合涂层力学性能的影响[J]. 材料热处理学报, 2015, 36 (12): 229- 235.
26 ZHAI Y J , QIAO S J , LU X L , et al. Effects of heat treatment on mechanical properties of γ-(Ni, Fe)/CrB/hBN self-lubrication anti-wear composite coatings by laser cladding[J]. Transactions of Materials and Heat Treatment, 2015, 36 (12): 229- 235.
27 陆小龙.后热处理对激光熔覆自润滑耐磨复合涂层组织和性能的影响[D].苏州: 苏州大学, 2016.
27 LU X L. Effects of post heat treatment on microstructure and properties of laser clad self-lubricating anti-wear composite coatings[D]. Suzhou: Soochow University, 2016.
28 王勉. 304不锈钢激光制备自润滑复合涂层微观组织结构和力学性能[D].长沙: 中南林业科技大学, 2019.
28 WANG M. Microstructure and mechanical properties of laser fabricated self-lubricating composite coatings on 304 stainless steel[D]. Changsha: Central South University of Forestry and Technology, 2019.
[1] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[2] 雷磊, 伍雨驰, 程子晋, 刘莉, 郑靖. 牙科陶瓷材料的摩擦学性能研究进展[J]. 材料工程, 2022, 50(2): 1-11.
[3] 杨礼河, 陈绪望, 张建国, 孙玉德. 纳米G/Fe3O4复合材料的制备及其摩擦学性能[J]. 材料工程, 2021, 49(2): 143-148.
[4] 王港, 刘秀波, 刘一帆, 祝杨, 欧阳春生, 孟元, 罗迎社. 304不锈钢激光熔覆Co-Ti3SiC2自润滑复合涂层微观组织与摩擦学性能[J]. 材料工程, 2021, 49(11): 105-115.
[5] 蒙德强, 王铁钢, 彭勇, 柯培玲, 朱强, 许人仁, 刘迁. 真空退火温度对AlCrSiN/Mo自润滑涂层结构与性能的影响[J]. 材料工程, 2021, 49(1): 126-132.
[6] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[7] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
[8] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[9] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[10] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[11] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[12] 贺星, 孔德军, 宋仁国. 激光熔覆Al-Ni-TiC-CeO2复合涂层的组织与耐腐蚀磨损性能[J]. 材料工程, 2019, 47(10): 68-75.
[13] 吴雪梅, 杨绿, 周元康, 曹阳. 超微坡缕石/Cu复合粉体作为润滑油添加剂的摩擦学性能[J]. 材料工程, 2018, 46(9): 88-94.
[14] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[15] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn