Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (8): 73-83    DOI: 10.11868/j.issn.1001-4381.2020.000182
  综述 本期目录 | 过刊浏览 | 高级检索 |
GH4720Li合金中析出相的研究进展
曲敬龙1,2, 易出山3, 陈竞炜4, 史玉亭2, 毕中南2, 杜金辉2
1. 北京钢研高纳科技股份有限公司, 北京 100081;
2. 钢铁研究总院高温合金新材料北京市重点实验室, 北京 100081;
3. 中国航发南方工业有限公司, 湖南 株洲 410000;
4. 中国航发湖南动力机械研究所, 湖南 株洲 412000
Research progress of precipitated phase in GH4720Li superalloy
QU Jing-long1,2, YI Chu-shan3, CHEN Jing-wei4, SHI Yu-ting2, BI Zhong-nan2, DU Jin-hui2
1. Beijing GAONA Materials&Technology Co., Ltd., Beijing 100081, China;
2. Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron&Steel Research Institute, Beijing 100081, China;
3. AECC South Industry Company Limited, Zhuzhou 410000, Hunan, China;
4. AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412000, Hunan, China
全文: PDF(4600 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 GH4720Li高温合金因其具有良好的高温强度、抗疲劳和抗腐蚀性能以及长期组织稳定性,被广泛应用于高性能航空发动机涡轮盘等转动部件。本文归纳了GH4720Li高温合金中γ'相的作用机理和演变规律,并分析了γ'相与高温性能之间的关联性和γ'相与残余应力的交互影响规律。此外,还综述了GH4720Li高温合金的改型研究进展,展望了未来分区控冷技术和双组织双性能盘制备技术在高温合金中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曲敬龙
易出山
陈竞炜
史玉亭
毕中南
杜金辉
关键词 GH4720Li高温合金析出相热加工服役性能残余应力新型合金    
Abstract:GH4720Li superalloy has been widely employed in high-performance aero engines turbine disks and other rotating component due to the excellent high temperature strength, anti-fatigue, corrosion resistance and long-term structural stability. The mechanism of function and evolution rule of γ'phase in GH4720Li superalloy was summed up in this paper. The relationship between γ'phase and high-temperature properties and the interaction law of γ'phase and residual stress were analyzed. In addition, the research progress of the new superalloy which was designed on the basis of GH4720Li superalloy was summarized, the future application of partitioned cooling technology and dual-organization dual-performance disk preparation technology was prospected.
Key wordsGH4720Li superalloy    precipitate    hot working    service property    residual stress    new superalloy
收稿日期: 2020-03-05      出版日期: 2020-08-15
中图分类号:  TG115.23  
通讯作者: 杜金辉(1968-),男,正高级工程师,博士,研究方向:高温合金新材料研制,联系地址:北京市海淀区学院南路76号钢铁研究总院(100081),E-mail:superally_1@163.com     E-mail: superally_1@163.com
引用本文:   
曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
QU Jing-long, YI Chu-shan, CHEN Jing-wei, SHI Yu-ting, BI Zhong-nan, DU Jin-hui. Research progress of precipitated phase in GH4720Li superalloy. Journal of Materials Engineering, 2020, 48(8): 73-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000182      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/73
[1] LIU F, CHEN J, DONG J, et al. The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy[J]. Materials Science and Engineering:A, 2016, 651:102-115.
[2] PANG H T, REED P A S. Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy Udimet 720Li[J]. Materials Science and Engineering:A, 2007, 448(1/2):67-79.
[3] BRYANT D J, MCINTOSH G. The manufacture and evaluation of a large turbine disc in cast and wrought alloy 720 Li[C]//Superalloys 1996. Pennsylvania:TMS, 1996:713-722.
[4] 孙雅茹,孙文儒,郭守仁. γ'相对合金热变形行为的影响[J]. 材料热处理学报, 2013, 34(3):50-54. SUN Y R, SUN W R, GUO S R, et al. Effect of γ' phase on hot ductility of U720Li superalloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(3):50-54.
[5] 陈佳语,张盼达,董建新. GH4720Li合金长期时效过程中γ'相演变规律[J]. 工程科学学报, 2015, 37(12):1610-1616. CHEN J Y, ZHANG P D, DONG J X, et al. Evolution of γ' precipitates in GH4720Li alloy during long-term aging[J]. Chinese Journal of Engineering, 2015, 37(12):1610-1616.
[6] YUAN Y, GU Y F, CUI C Y, et al. Creep mechanisms of U720Li disc superalloy at intermediate temperature[J]. Materials Science and Engineering:A, 2011, 528(15):5106-5111.
[7] 曲敬龙,杜金辉,毕中南. 均匀化态GH4720Li合金的热变形行为[J]. 钢铁研究学报, 2011, 23(增刊2):247-250. QU J L, DU J H, BI Z N. Hot deformation behavior of homogenization treated GH4720Li ingot[J]. Journal of Iron and Steel Research, 2011, 23(Suppl 2):247-250.
[8] 曲敬龙,杜金辉,邓群. GH4720Li合金铸锭热加工过程中的组织演变行为[J]. 材料工程, 2006(增刊1):139-142. QU J L, DU J H, DENG Q. The structural evolution of alloy GH4720Li ingots during hot working[J]. Journal of Materials Engineering, 2006(Suppl 1):139-142.
[9] 杜金辉,曲敬龙,邓群. GH4720Li合金的铸态组织和均匀化工艺[J]. 钢铁研究学报, 2005, 17(3):60-64. DU J H, QU J L, DENG Q. As-cast microstructure and homogenization process of alloy GH4720Li[J]. Journal of Iron and Steel Research, 2005, 17(3):60-64.
[10] 曲敬龙,杜金辉,毕中南. 等温锻造工艺对GH4720Li合金盘锻件组织的影响[J]. 钢铁研究学报, 2012, 24(2):49-53. QU J L, DU J H, BI Z N. Effect of isothermal forging on microstructure for superalloy GH4720Li disc[J]. Journal of Iron and Steel Research, 2012, 24(2):49-53.
[11] 于秋颖,董建新,张麦仓. 亚固溶温度热处理对GH720Li难变形高温合金γ'相的影响[J]. 北京科技大学学报, 2013, 35(6):763-769. YU Q Y, DONG J X, ZHANG M C. Influence of heat treatments at temperatures below the γ' solvus on γ' phase in nickel-base superalloy GH720Li[J]. Chinese Journal of Engineering, 2013, 35(6):763-769.
[12] 言建,唐超,毕中南. 冷却方式对GH720Li合金固溶处理组织及力学性能的影响[J]. 金属热处理, 2016, 41(4):150-153. YAN J, TANG C, BI Z N, et al. Effects of cooling methods on microstructure and mechanical properties of solution treated GH720Li alloy[J]. Heat Treatment of Metals, 2016, 41(4):150-153.
[13] 于秋颖,董建新,张麦仓. 难变形高温合金GH720Li平衡析出相的热力学计算[J]. 稀有金属材料与工程, 2010, 39(5):857-861. YU Q Y, DONG J X, ZHANG M C. Effects of cooling methods on microstructure and mechanical properties of solution treated GH720Li alloy[J]. Rare Metal Materials and Engineering, 2010, 39(5):857-861.
[14] JACKSON M P, REED R C. Heat treatment of Udimet 720Li:the effect of microstructure on properties[J]. Materials Science and Engineering:A, 1999, 259(1):85-97.
[15] MASOUMI F, JAHAZI M, SHAHRIARI D, et al. Coarsening and dissolution of γ' precipitates during solution treatment of AD730γ' Ni-based superalloy:mechanisms and kinetics models[J]. Journal of Alloys and Compounds, 2016, 658(15):981-995.
[16] RADIS R, SCHAFFER M, ALBU M, et al. Multimodal size distributions of γ' precipitates during continuous cooling of Udimet 720 Li[J]. Acta Materialia, 2009, 57(19):5739-5747.
[17] ARDELL A J. Non-integer temporal exponents in trans-interface diffusion-controlled coarsening[J]. Journal of Materials Science, 2016, 51:6133-6148.
[18] CHANG L, JIN H, SUN W. Solidification behavior of Ni-base superalloy Udimet 720Li[J]. Journal of Alloys and Compounds, 2015, 653(25):266-270.
[19] WILSON A S, HARDY M C, STONE H J. Comparison of experimental and predicted TCP solvus temperatures in ni-base superalloys[J]. Journal of Alloys and Compounds, 2019, 789(15):1046-1055.
[20] XIANG X, YAO Z, DONG J, et al. Dissolution behavior of intragranular M23C6 carbide in 617B Ni-base superalloy during long-term aging[J]. Journal of Alloys and Compounds, 2019, 787:216-228.
[21] BI Z N, LV X D, ZHANG J. Solutions for the "difficult-to-deform" wrought superalloys[C]//MATEC Web of Conferences, Paris:EDP Sciences, 2014:07002.
[22] FAN H, JIANG H, DONG J, et al. An optimization method of upsetting process for homogenized, nickel-based superalloy Udimet 720Li ingot considering both cracking and recrystallization[J]. Journal of Materials Processing Technology, 2019, 269:52-64.
[23] FRANCIS E M, GRANT B M B, FONSECA J Q D, et al. High-temperature deformation mechanisms in a polycrystalline nickel-base superalloy studied by neutron diffraction and electron microscopy[J]. Acta Materialia, 2014, 74(1):18-29.
[24] REED R C. The superalloys:fundamentals and applications[M]. Cambridge:Cambridge University Press, 2006.
[25] GOPINATH K, GOGIA A K, KAMAT S V, et al. Dynamic strain aging in Ni-base superalloy 720Li[J]. Acta Materialia, 2009, 57(4):1243-1253.
[26] GRANT B M B, FRANCIS E M, FONSECA J Q D, et al. The effect of γ' size and alloy chemistry on dynamic strain aging in advanced polycrystalline nickel base superalloys[J]. Materials Science and Engineering:A, 2013, 573(20):54-61.
[27] NEMETH A A N, CRUDDEN D J, ARMSTRONG D E J, et al. Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy[J]. Acta Materialia, 2017, 126:361-371.
[28] GOPINATH K, GOGIA A K, KAMAT S V, et al. Low cycle fatigue behaviour of a low interstitial ni-base superalloy[J]. Acta Materialia, 2009, 57(12):3450-3459.
[29] PANG H, REED P. Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy[J]. International Journal of Fatigue, 2008, 30(10/11):2009-2020.
[30] VARVILL R. Heat exchanger development at reaction engines Ltd[J]. Acta Astronautica, 2010, 66(9/10):1468-1474.
[31] WITHERS P J, BHADESHIA H K D H. Residual stress:Part 1[J].Materials Science and Technology,2001,17(4):355-365.
[32] 秦海龙,张瑞尧,毕中南. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8):997-1007. QIN H L, ZHANG R Y, BI Z N. Study on the evolution of residual stress during aging treatment in a GH4169 alloy disk[J]. Acta Metallurgica Sinica, 2019, 55(8):997-1007.
[33] 毕中南,秦海龙,董志国. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9):1160-1174. BI Z N, QIN H L, DONG Z G. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings[J]. Acta Metallurgica Sinica, 2019, 55(9):1160-1174.
[34] DYE D, CONLON K T, REED R C, et al. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718[J]. Metallurgical and Materials Transactions:A, 2004, 35(6):1703-1713.
[35] QIN H, BI Z, YU H, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during aging in IN718 superalloy[J]. Materials Science and Engineering:A, 2018, 728(13):183-195.
[36] QIN H, BI Z, LI D, et al. Study of precipitation-assisted stress relaxation and creep behavior during the aging of a nickel-iron superalloy[J]. Materials Science and Engineering:A, 2019, 742(10):493-500.
[37] QIN H, BI Z, YU H, et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging[J]. Journal of Alloys and Compounds, 2018, 740(5):997-1106.
[38] DEVAUX A, GEORGES E, HERITIER P. Development of new C&W superalloys for high temperature disk applications[J]. Advanced Materials Research, 2011, 278:405-410.
[39] DEVAUX A, GEORGES E, HERITIER P. Properties of new C&W superalloys for high temperature disk applications[C]//Advanced Science. Pennsylvania:TMS, 2010:223-236.
[40] BELLOT C, LAMESLE P. Quantitative measurement of gamma prime precipitates in two industrial nickel-based superalloys using extraction and high resolution SEM imaging[J]. Journal of Alloys and Compounds, 2013, 570(5):100-103.
[41] QU J, XIE X, BI Z, et al. Hot deformation characteristics and dynamic recrystallization mechanism of GH4730 Ni-based superalloy[J].Journal of Alloys and Compounds,2019,785:918-924.
[42] KONKOVA T, RAHIMI S, MIRONOV S, et al. Effect of strain level on the evolution of microstructure in a recently developed AD730 nickel based superalloy during hot forging[J]. Materials Characterization, 2018, 139:437-445.
[43] PEREZ M, DUMONT C, NODIN O, et al. Impact of forging direction on the recrystallization behaviour of nickel base superalloy AD730 billet material at subsolvus temperatures[J]. Materials Characterization, 2018, 146:169-181.
[44] VERNIER S, FRANCHET J M, DUMONT C, et al. γ' precipitates with a twin orientation relationship to their hosting grain in a γ'-γ' nickel-based superalloy[J]. Scripta Materialia, 2018, 153:10-13.
[45] VERNIER S, FRANCHET J M, DUMONT C, et al. A mechanism leading to γ' precipitates with {111} facets and unusual orientation relationships to the matrix in γ'-γ' nickel-based superalloys[J]. Metallurgical and Materials Transactions:A, 2018, 49(9):4308-4323.
[46] DEVAUX A, HELSTROFFER A, CORMIER J, et al. Effect of aging heat treatment on mechanical properties on mechanical properties of AD730TM superalloy[C]//Advanced Science. Pennsylvania:TMS, 2014:521-235.
[47] LOUIS T, PATRICK V, JONATHAN C, et al. Relationships between microstructural parameters and time-dependent mechanical properties of a new nickel-based superalloy AD730γ'[J]. Metals, 2015, 5(4):2236-2251.
[48] THEBAUD L, VILLECHAISE P, CROZET C, et al. Is there an optimal grain size for creep resistance in Ni-based disk superalloys[J]. Materials Science and Engineering:A, 2018, 716(14):274-283.
[49] MASOUMI F, THEBAUD L, SHAHRIARI D, et al. High temperature creep properties of a linear friction welded newly developed wrought Ni-based superalloy[J]. Materials Science and Engineering:A, 2017, 710:214-226.
[1] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[2] 高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
[3] 赵慧生, 陈国清, 盖鹏涛, 李志强, 周文龙, 付雪松. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5): 136-143.
[4] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[5] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[6] 葛勇, 王博伦, 相宁, 王韬, 孙琦伟, 颜悦. 二次注射成型光学制件厚度截面的残余应力分析[J]. 材料工程, 2020, 48(10): 88-95.
[7] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[8] 孙挺, 闫永明, 何肖飞, 尉文超, 杜玉婧. Cr-Mo-B系机械工程用钢高温流变行为及热加工图[J]. 材料工程, 2019, 47(9): 55-60.
[9] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[10] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[11] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[12] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[13] 马龙腾, 王彦峰, 狄国标, 杨永达, 黄乐庆, 李春智. Q460FRW耐火钢的组织稳定性[J]. 材料工程, 2019, 47(10): 82-89.
[14] 侯帅, 朱有利, 邱骥, 倪永恒. 喷丸强化对Ti6Al4V半椭圆表面裂纹J积分和裂纹扩展速率的影响[J]. 材料工程, 2019, 47(1): 139-146.
[15] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn