Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (2): 88-96    DOI: 10.11868/j.issn.1001-4381.2020.000205
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型
张连腾1,2, 陈乐平1,2,*(), 徐勇1,2, 袁源平1
1 南昌航空大学 航空制造工程学院, 南昌 330063
2 南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 南昌 330063
Hot deformation behavior and constitutive equation of Mg-9Al-3Si-0.375Sr-0.78Y alloy
Lian-teng ZHANG1,2, Le-ping CHEN1,2,*(), Yong XU1,2, Yuan-ping YUAN1
1 School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(16932 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用Gleeble-3500热模拟试验机对Mg-9Al-3Si-0.375Sr-0.78Y合金试样进行等温恒应变速率压缩实验,研究其在温度250~400℃、应变速率0.001~10 s-1条件下的热变形行为。结果表明:在热变形过程中,峰值应力随着应变速率的降低和温度的升高而减小,且峰值应力对应变速率的敏感性随着变形温度的下降而增强。建立了考虑应变的热变形Arrhenius本构模型,模型精度良好,在300,350℃及0.001~10 s-1范围内,模型的平均绝对误差分别为1.57%和1.76%;合金的平均变形激活能为183.58 kJ/mol,平均应变速率敏感指数为0.1616。热变形过程中,α-Mg相呈现明显的动态再结晶特征,β-Mg17Al12相尺寸减小且分布均匀,初生Mg2Si相较小。在低温(250~300℃)变形时,动态再结晶仅发生在晶界处。在高温(350~400℃)变形时,初生α-Mg晶粒发生了明显的动态再结晶。随着温度的增加和应变速率的降低,再结晶程度提高,再结晶晶粒逐渐长大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张连腾
陈乐平
徐勇
袁源平
关键词 镁合金热变形本构方程动态再结晶    
Abstract

The Mg-9Al-3Si-0.375Sr-0.78Y alloy specimens were compressed at constant isothermal strain rate by Gleeble 3500 thermal-simulation machine. The hot deformation behavior in the range of 250-400℃ and strain rate 0.001-10 s-1were studied. The results show that the peak stress decreases with the decreasing of strain rate and the increasing of temperature, meanwhile, the sensitivity of peak stress to strain rate increases with the decreasing of deformation temperature. In addition, the Arrhenius constitutive equation of hot deformation considering strain is established. The calculated flow stresses are compared with the experimental results, in the range of 300, 350℃ and 0.001-10 s-1, the mean absolute errors of the model are 1.57% and 1.76%, respectively. The average deformation activation energy is about 183.58 kJ/mol, and the average strain rate sensitivity index is 0.1616. The α-Mg phases exhibit dynamic recrystallization characteristics obviously. The size of β-Mg17Al12 phases decreases and its distribution becomes uniform, and the morphology of primary Mg2Si phase changes little. At low temperature (250-300℃), dynamic recrystallization occurs only at the grain boundary. Under high temperature (350-400℃) deformation, the primary α-Mg grains show significant dynamic recrystallization. With the increasing temperature and decreasing strain rate, recrystallization degree increases and recrystallization grain grows gradually.

Key wordsmagnesium alloy    hot deformation    constitutive equation    dynamic crystallization
收稿日期: 2020-03-11      出版日期: 2021-02-27
中图分类号:  TG146.2+2  
基金资助:国家自然科学基金资助项目(51261026);轻合金加工科学与技术国防重点学科实验室基金项目(G201903068);上海航天科技创新基金项目(SAST2018057)
通讯作者: 陈乐平     E-mail: jnnclp@163.com
作者简介: 陈乐平(1964-), 男, 教授, 研究方向: 物理场控制金属凝固技术、航空轻合金加工及成形技术, 联系地址: 江西省南昌市丰和南大道696号南昌航空大学(330063), E-mail: jnnclp@163.com
引用本文:   
张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
Lian-teng ZHANG, Le-ping CHEN, Yong XU, Yuan-ping YUAN. Hot deformation behavior and constitutive equation of Mg-9Al-3Si-0.375Sr-0.78Y alloy. Journal of Materials Engineering, 2021, 49(2): 88-96.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000205      或      http://jme.biam.ac.cn/CN/Y2021/V49/I2/88
Fig.1  Mg-9Al-3Si-0.375Sr-0.78Y合金的铸态微观组织(a)及X射线衍射谱图(b)
Fig.2  截取试样的位置
Fig.3  Mg-9Al-3Si-0.375Sr-0.78Y合金在不同热变形条件下的真应力-真应变曲线
(a)T=350 ℃; (b)0.1 s-1
Fig.4  Mg-9Al-3Si-0.375Sr-0.78Y合金在不同热变形温度下的峰值应力曲线
Fig.5  不同温度时ln$\dot \varepsilon $-lnσ(a)和ln$\dot \varepsilon $-σ(b)关系曲线
Fig.6  不同温度下$\dot \varepsilon $与ln[sinh(ασ)](a)及不同应变速率下ln[sinh(ασ)]与T-1(b)的关系曲线
Fig.7  Mg-9Al-3Si-0.375Sr-0.78Y合金ln[sinh(ασ)]与lnZ的关系
Fig.8  材料常数与应变的关系 (a)α; (b)n; (c)Q; (d)lnA
Constant B0 B1 B2 B3 B4 B5
α 0.00873 -0.02414 0.17981 -0.66641 1.22319 -0.86019
n 9.5129 -25.7345 129.4142 -405.126 555.0627 -245.097
Q 1034.341 -3585.47 20899.58 -74667.1 123255 -73783.9
lnA 76.61252 -277.728 1618.898 -5753.43 9447.826 -5627.98
Table 1  式(11)的多项式系数
Fig.9  不同温度和应变速率下流动应力预测值与实验结果的对比
(a)250 ℃; (b)300 ℃; (c)350 ℃; (d)400 ℃
Fig.10  流动应力的预测值与实验值对比
Fig.11  合金在应变速率为0.1 s-1时不同热变形温度下的微观组织 (a)250 ℃; (b)300 ℃; (c)350 ℃; (d)400 ℃
Fig.12  合金在350 ℃时不同应变速率下的微观组织(a)10 s-1; (b)1 s-1; (c)0.1 s-1; (d)0.001 s-1
1 PAN F S , YANG M B , CHEN X H . A review on casting magnesium alloys: modification of commercial alloys and development of new alloys[J]. Journal of Materials Science & Technology, 2016, 32 (12): 1211- 1221.
2 李落星, 周佳, 张辉. 车身用铝、镁合金先进挤压成形技术及应用[J]. 机械工程学报, 2012, 48 (18): 35- 43.
2 LI L X , ZHOU J , ZHANG H . Advanced extrusion technology and application of aluminium, magnesium alloy for vehicle body[J]. Journal of Mechanical Engineering, 2012, 48 (18): 35- 43.
3 李宜达, 梁敏洁, 廖海洪, 等. 高性能镁合金及其在汽车行业应用的研究进展[J]. 热加工工艺, 2013, 42 (10): 12- 16.
3 LI Y D , LIANG M J , LIAO H H , et al. Research progress of advanced magnesium alloys and its application in auto industry[J]. Hot Working Technology, 2013, 42 (10): 12- 16.
4 TSUZUKI R , KONDOH K . In-situ solid-state synthesis of Mg composite with Mg2Si dispersoids[J]. Materials Science Forum, 2005, 475/479, 497- 500.
5 郭学锋, 杨文朋, 宋佩维. 往复挤压Mg-4Al-2Si合金中Mg2Si颗粒形貌与分布[J]. 材料工程, 2011, (11): 62- 67.
5 GUO X F , YANG W P , SONG P W . Morphological and distribution characteristics of Mg2Si particles in Mg-4Al-2Si alloy prepared by reciprocating extrusion[J]. Journal of Materials Engineering, 2011, (11): 62- 67.
6 陈可, 李子全, 刘劲松, 等. Ba对原位自生Mg2Si/Mg-Zn-Si复合材料组织与力学性能的影响[J]. 材料工程, 2010, (4): 63- 68.
6 CHEN K , LI Z Q , LIU J S , et al. Effects of Ba addition on microstructure and properties of in-situ synthesized Mg2Si/Mg-Zn-Si composite[J]. Journal of Materials Engineering, 2010, (4): 63- 68.
7 毛建军, 潘复生, 陈先华, 等. ZK60镁合金的热压缩变形行为[J]. 材料导报, 2010, (4): 62- 66.
7 MAO J J , PAN F S , CHEN X H , et al. Hot compression deformation behavior of ZK60 magnesium alloy[J]. Materials Reports, 2010, (4): 62- 66.
8 AGNEW S R , MEHROTRA P , LILLO T M , et al. Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: experiments and simulations[J]. Acta Materialia, 2005, 53 (11): 3135- 3146.
doi: 10.1016/j.actamat.2005.02.019
9 王忠堂, 霍达, 于晓林. 基于新加工硬化率方法的AZ80镁合金动态再结晶临界条件[J]. 中国有色金属学报, 2018, 28 (10): 30- 37.
9 WANG Z T , HUO D , YU X L . Critical conditions of dynamic recrystallization of AZ80 magnesium alloy based on a new method of work hardening rate[J]. Chinese Journal of Nonferrous Metals, 2018, 28 (10): 30- 37.
10 陈祥龙, 徐春国, 秦思晓, 等. 挤压态ZK61M镁合金热压缩变形行为与本构方程建立[J]. 锻压技术, 2019, 44 (5): 147- 153.
10 CHEN X L , XU C G , QIN S X , et al. Hot compression deformation behavior of extruded ZK61M magnesium alloy and establishment of constitutive equation[J]. Forging & Stamping Technology, 2019, 44 (5): 147- 153.
11 WONG T W , HADADZADEH A , WELLS M A . High temperature deformation behavior of extruded AZ31B magnesium alloy[J]. Journal of Materials Processing Technology, 2017, 251, 360- 368.
12 FENG F , HUANG S , MENG Z , et al. A constitutive and fracture model for AZ31B magnesium alloy in the tensile state[J]. Materials Science and Engineering: A, 2014, 594, 334- 343.
doi: 10.1016/j.msea.2013.11.008
13 KARIMI E , ZAREIHANZAKI A , PISHBIN M H , et al. Instantaneous strain rate sensitivity of wrought AZ31 magnesium alloy[J]. Materials & Design, 2013, 49 (4): 173- 180.
14 张晓华, 姜巨福, 罗守靖. AZ91D镁合金的热压缩变形行为[J]. 中国有色金属学报, 2009, 19 (10): 1720- 1725.
14 ZHANG X H , JIANG J F , LUO S J . Compression deformation behavior of AZ91D magnesium alloy at elevated temperature[J]. Chinese Journal of Nonferrous Metals, 2009, 19 (10): 1720- 1725.
15 BLUM W , WEIDINGER P , WATZINGER B . Time dependent deformation of the magnesium alloys AS21 and AZ91 around 100 deg. C[J]. Zeitschrift fur Metallkunde, 1997, 88 (8): 636- 641.
16 SPIGARELLI S , CICCARELLI D , EVANGELISTA E . Compressive deformation of an Mg-Al-Si-RE alloy between 120 and 180℃[J]. Materials Letters, 2004, 58 (3/4): 460- 464.
17 张连腾, 陈乐平, 周全. Sr、Y复合变质对Mg-9Al-3Si合金凝固组织及力学性能影响[J]. 特种铸造及有色合金, 2019, 39 (11): 1268- 1272.
17 ZHANG L T , CHEN L P , ZHOU Q . Effects of compound treatment of Sr-Y on solidification structure and mechanical properties of Mg-9Al-3Si alloy[J]. Special Casting & Nonferrous Alloys, 2019, 39 (11): 1268- 1272.
18 刘飞, 尹健, 邵琦, 等. 脉冲磁场对高含量自生Mg2Si/Mg-Al基复合材料凝固组织的影响[J]. 材料导报, 2019, 33 (2): 293- 297.
18 LIU F , YIN J , SHAO Q , et al. Improved Solidification Structure of in-situ Mg2Si/Mg-Al composites by applying pulsed magnetic field: a comparative study[J]. Materials Reports, 2019, 33 (2): 293- 297.
19 CAI J , LI F , LIU T , et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain[J]. Materials & Design, 2011, 32 (3): 1144- 1151.
20 徐勇, 杨湘杰, 何毅, 等. TC4钛合金流动软化行为及本构模型研究[J]. 稀有金属材料与工程, 2017, 46 (5): 1321- 1326.
20 XU Y , YANG X J , HE Y , et al. Flow softening behavior and constitutive equation of TC4 titanium alloy during hot deformation[J]. Rare Metal Materials and Engineering, 2017, 46 (5): 1321- 1326.
21 李庆波, 叶凡, 周海涛, 等. Mg-9Y-3Zn-0.5Zr合金的热变形行为[J]. 中国有色金属学报, 2008, 18 (6): 1012- 1019.
21 LI Q B , YE F , ZHOU H T , et al. Hot deformation behavior of Mg-9Y-3Zn-0.5Zr alloy[J]. Chinese Journal of Nonferrous Metals, 2008, 18 (6): 1012- 1019.
22 朱艳春, 马立峰, 黄志权, 等. 加工参数对铸态AZ31B镁合金热变形行为及组织演变的影响[J]. 稀有金属材料与工程, 2019, 48 (1): 263- 268.
22 ZHU Y C , MA L F , HUANG Z Q , et al. Effects of processing parameters on hot deformation behavior and microstructure evolution of as-cast AZ31B magnesium alloy[J]. Rare Metal Materials and Engineering, 2019, 48 (1): 263- 268.
[1] 夏先朝, 冯学磊, 孙京丽, 聂敬敬, 庞松, 袁勇, 董泽华. 镁合金超疏水环氧复合涂层的制备与性能[J]. 材料工程, 2022, 50(8): 124-132.
[2] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[3] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[4] 汪雅婷, 黎俊良, 袁楷峰, 陈广义. 基于GA改进BP神经网络预测热变形流变应力模型的建立[J]. 材料工程, 2022, 50(6): 170-177.
[5] 汤中英, 邢清源, 杨守杰, 丁宁. 新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为[J]. 材料工程, 2022, 50(3): 131-137.
[6] 宋广胜, 牛嘉维, 宋鸿武, 张士宏, 邓思瀛. Zirlo锆合金高温变形行为及本构关系[J]. 材料工程, 2022, 50(3): 138-147.
[7] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[8] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[9] 田亚强, 赵冠璋, 刘芸, 张源, 郑小平, 陈连生. 生物可降解医用镁合金体内外降解行为研究进展[J]. 材料工程, 2021, 49(5): 24-37.
[10] 冯靖凯, 张丁非, 陈霞, 赵阳, 蒋斌, 潘复生. 一种细化AZ31镁合金的固液两相区复合挤压工艺[J]. 材料工程, 2021, 49(4): 78-88.
[11] 乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
[12] 陈燕宁, 吴量, 陈勇花, 程苓, 姚文辉, 潘复生. 镁合金表面氧化石墨烯复合涂层的研究现状[J]. 材料工程, 2021, 49(12): 1-13.
[13] 汪荣香, 洪立鑫, 章晓波. 生物医用镁合金耐腐蚀性能研究进展[J]. 材料工程, 2021, 49(12): 14-27.
[14] 阴明, 孙俊丽, 鲍同尧, 刘笑达, 杜华云, 卫英慧, 侯利锋. 合金元素对镁合金耐腐蚀性能影响的研究进展[J]. 材料工程, 2021, 49(12): 28-39.
[15] 蒋诗语, 袁媛, 陈涛, 谷达冲. 元素固溶与析出对镁合金耐蚀性影响的研究进展[J]. 材料工程, 2021, 49(12): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn