Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (8): 14-24    DOI: 10.11868/j.issn.1001-4381.2020.000206
  复合材料专栏 本期目录 | 过刊浏览 | 高级检索 |
航天飞行器热防护系统低密度烧蚀防热材料研究进展
冯志海, 师建军, 孔磊, 罗丽娟, 梁馨, 匡松连
航天材料及工艺研究所 先进功能复合材料技术重点实验室, 北京 100076
Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles
FENG Zhi-hai, SHI Jian-jun, KONG Lei, LUO Li-juan, LIANG Xin, KUANG Song-lian
Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials&Processing Technology, Beijing 100076, China
全文: PDF(8953 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 当前,树脂基烧蚀防热仍被认为是最有效、最可靠、最成熟和最经济的一种热防护方式,在航天飞行器热防护系统中普遍采用。近些年在载人航天、探月工程、深空探测和新型航天飞行器系列工程的需求牵引下,本团队开发了蜂窝增强低密度材料、新型防隔热一体化材料、轻质烧蚀维形材料等先进防热复合材料,并开展了相应的应用基础以及工程应用研究工作,对烧蚀材料复杂防热机理及多重防热机制的协同作用进行了探索研究。随着再入/进入航天飞行器先进热防护系统需求的发展,功能多样化、兼容与集成是低密度树脂基烧蚀防热材料的主要发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯志海
师建军
孔磊
罗丽娟
梁馨
匡松连
关键词 烧蚀低密度气凝胶多重热防护多功能集成    
Abstract:At present, ablation is still considered as one of the most effective, reliable, mature and economical thermal protection methods, which is widely used in thermal protection systems (TPS) of aerospace flight vehicles. Recent years, series of advanced lightweight ablative composites (LAC) were developed driven by major projects such as manned space flight, lunar exploration program, deep space exploration, and near space flight vehicles. Particularly, material's developing, engineering application and corresponding applied basic research of LACs filled in honeycombs and new LAC integrated ablation & insulation were emphatically introduced. Furthermore, complicated ablative mechanisms and synergistic effects of multiple thermal protection methods were explored. With the development of advanced TPS demand, multi-functionalization, compatibility and integration are the main development tendency of LAC for earth reentry or atmospheric entry aerospace flight vehicles.
Key wordsablation    low-density    aerogel    multiple thermal protection    multifunctional integration
收稿日期: 2020-03-12      出版日期: 2020-08-15
中图分类号:  V45  
通讯作者: 冯志海(1965-),男,研究员,973项目技术首席,博士,研究方向为防热功能复合材料、碳纤维及其复合材料、新材料设计、开发与应用,联系地址:北京市丰台区南大红门路1号中国运载火箭技术研究院(100076),E-mail:fengzhh2006@sina.com     E-mail: fengzhh2006@sina.com
引用本文:   
冯志海, 师建军, 孔磊, 罗丽娟, 梁馨, 匡松连. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8): 14-24.
FENG Zhi-hai, SHI Jian-jun, KONG Lei, LUO Li-juan, LIANG Xin, KUANG Song-lian. Research progress in low-density ablative materials for thermal protection system of aerospace flight vehicles. Journal of Materials Engineering, 2020, 48(8): 14-24.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000206      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/14
[1] 吴国庭,陈月根. 防热结构设计[M]//航天器进入与返回技术(下).北京:宇航出版社, 1991. WU G T, CHEN Y G. Design of thermal protection structures[M]//Spacecraft reentry and return technology (Vol Ⅱ).Beijing:Aerospace Press, 1991.
[2] YANG Y, YANG J, FANG D. Research progress on thermal protection materials and structures of hypersonic vehicles[J]. Applied Mathematics and Mechanics, 2008, 29(1):51-60.
[3] 陈玉峰,洪长青,胡成龙,等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5):311-390. CHEN Y F, HONG C Q, HU C L, et al. Ceramic-based thermal protection materials for aerospace vehicles[J]. Advanced Ceramics, 2017, 38(5):311-390.
[4] LEISER D B. Shuttle thermal protection system.[J]. American Ceramic Society Bulletin, 2004, 83(8):44-47.
[5] DUMBACHER D L. X-37 flight demonstrator project:capabilities for future space transportation system development[C]//International Astronautical Congress (IAF). Washington DC:American Institute of Aeronautics and Astronautics (AIAA), 2004.
[6] BEHRENS B, MüLLER M. Technologies for thermal protection systems applied on re-usable launcher[J]. Acta Astronautica, 2004, 55(3):529-536.
[7] 吴国庭. 哥伦比亚号防热系统概貌[J]. 国际太空, 2003(6):26-28. WU G T. Overview of Columbia's thermal protection system[J]. Space International, 2003(6):26-28.
[8] 王鸿奎,杨汝平. 泡沫塑料是毁掉哥伦比亚号航天飞机的祸首[J]. 导弹与航天运载技术, 2004, 131(6):48. WANG H K, YANG R P. Plastic foam is what destroyed the space shuttle Columbia[J]. Missiles and Space Vehicles, 2004, 131(6):48.
[9] JOHNSON S, GASCH M, LEISER D, et al. Development of new TPS at NASA ames research center[C]//AIAA Meeting Papers. Ohio:American Institute of Aeronautics and Astronautics (AIAA), 2008.
[10] NATALI M, KENNY J M, TORRE L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices:a review[J]. Progress in Materials Science, 2016, 84:192-275.
[11] SCHMIDT D L. Ablative polymers in aerospace technology[J]. Journal of Macromolecular Science:Part A,1969, 3(3):327-365.
[12] NATALI M, TORRE L. Composite materials:ablative[M]//Wiley encyclopedia of composites. 2 ed.New Jersey:Wiley, 2012.
[13] NATALI M, KENNY J M, TORRE L. Thermoset nanocomposites as ablative materials for rocket and military applications[M]//Thermosets:structure, properties, and applications. London:Elsevier, 2018.
[14] FAVALORO M. Ablative materials[M]//Kirk-Othmer encyclopedia of chemical technology. Atlanta:American Cancer Society, 2000.
[15] KOO J H, NATALI M, TATE J, et al. Polymer nanocomposites as ablative materials-a comprehensive review[J]. International Journal of Energetic Materials and Chemical Propulsion, 2013, 12(2):119-162.
[16] HURWITZ F I. Thermal protection systems (TPSs)[M]//Encyclopedia of aerospace engineering. New Jersey:Wiley, 2011.
[17] 李仲平. 防热复合材料发展与展望[J]. 复合材料学报, 2011, 28(2):1-9. LI Z P. Major advancement and development trends of TPS composites[J]. Acta Materiae Compositae Sinica,2011,28(2):1-9.
[18] 叶培建,杨孟飞,彭兢,等. 中国深空探测进入/再入返回技术的发展现状和展望[J]. 中国科学:技术科学, 2015(3):229-238. YE P J, YANG M F, PENG J, et al. Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration[J]. Science China:Technological Science, 2015(3):229-238.
[19] 吴国庭. 神舟飞船防热结构的研制[J]. 航天器工程, 2004, 13(3):14-19. WU G T. Development of thermal protection structure of Shenzhou spacecraft[J]. Spacecraft Engineering, 2004, 13(3):14-19.
[20] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12.
[21] DAFORNO G, GRAHAM J, TOMPKINS S. Initial development of an ablative leading edge for the space shuttle orbiter[C]//AIAA Meeting Paper. California:American Institute of Aeronautics and Astronautics (AIAA), 1973.
[22] ANON. Appollo heatshield pahse 1 monthly progress report[R]. North Carolina:Research and Advanced Development Division AVCO Corporation, 1962.
[23] MILLER J E, CHRISTIANSEN E L, DAVIS B A, et al. Ballistic performance model of crater formation in monolithic, porous thermal protection systems[J]. Procedia Engineering, 2015, 103:398-404.
[24] CROUCH R K, WALBERG G D. An investigation of ablation behavior of avcoat 5026-39/M over a wide range of thermal environments[R]. Washington DC:Langley Research Center, 1969.
[25] 王春明,梁馨,孙宝岗,等. 低密度烧蚀材料在神舟飞船上的应用[J]. 宇航材料工艺, 2011, 41(2):5-8. WANG C M, LIANG X, SUN B G, et al. Application of low density ablative material on Shenzhou spacecraft[J]. Aerospace Materials&Technology, 2011, 41:5-8.
[26] 梁馨,谭朝元,罗丽娟,等. 低密度防热材料烧蚀性能研究[J]. 载人航天, 2016, 22(3):298-301. LIANG X, TAN C Y, LUO L J, et al. Research on ablation properties of low density thermal protection materials[J]. Manned Spaceflight, 2016, 22:298-301.
[27] 孙红卫,凌英,刘兰,等. 空间级低密度烧蚀材料研究[C]//复合材料的现状与发展——第11届全国复合材料学术会议论文集.合肥:中国科学技术大学出版社, 2000. SUN H W, LING Y, LIU L, et al. Study on space grade low density ablative materials[C]//Current situation and development of composite materials, Proceedings of the 11th National Conference on Composites. Hefei:University of Science & Technology of China Press, 2000.
[28] 董彦芝,刘峰,杨昌昊,等. 探月工程三期月地高速再入返回飞行器防热系统设计与验证[J]. 中国科学:技术科学, 2015, 45(2):151-159. DONG Y Z, LIU F, YANG C H, et al. Design and verification of the TPS of the circumlunar free return and reentry flight vehicle for the 3rd phase of Chinese lunar exploration program[J]. Science China:Technological Science,2015,45(2):151-159.
[29] 王曼霞. 航天材料的现状与展望[J]. 宇航材料工艺, 1986, 16(5):1-12. WANG M X. Current situation and prospect of aerospace materials[J].Aerospace Materials&Technology,1986,16(5):1-12.
[30] 邱惠中. 先进战略导弹用材料的现状和发展前景[J]. 宇航材料工艺, 1992(4):8-14. QIU H Z. Present situation and developing prospect of materials for advanced strategic missiles[J]. Aerospace Materials & Technology, 1992(4):8-14.
[31] LAIBLE R C, FIGUCIA F, FERGUSON W J. The application of high-modulus fibers to ballistic protection[J]. Journal of Macromolecular Science:Part A, 1973, 7(1):295-322.
[32] LUEHMANN W, LYON J. Aerothermal ablative characterization of selected external insulator candidates[C]//Joint Propulsion Conferences. Monterey, CA:American Institute of Aeronautics and Astronautics (AIAA), 1993.
[33] RICHTER G P, SMITH T D. Ablative material testing for low-pressure, low-cost rocket engines[R]. Ohio:Lewis Research Center, 1995.
[34] LIN T C. Development of US air force intercontinental ballistic missile weapon systems[J]. Journal of Spacecraft and Rockets, 2003, 40(4):491-509.
[35] 王晓鹏,罗振华,张勃兴,等. 轻质隔热纳米孔结构耐烧蚀酚醛材料[J]. 宇航材料工艺, 2014, 44(1):84-88. WANG X P, LUO Z H, ZHANG B X, et al. Preparation and properties of ablation-resistant phenolic resin with low density, heat insulation and nanopores[J]. Aerospace Materials & Technology, 2014, 44(1):84-88.
[36] 张宗强,匡松连,尚龙,等. 树脂基复合材料长时间烧蚀防热的应用研究[J]. 宇航材料工艺, 2007, 37(6):29-31. ZHANG Z Q, KUANG S L, SHANG L, et al. Resin composites on long time ablation and thermal protection[J]. Aerospace Materials & Technology, 2007, 37(6):29-31.
[37] LAUB B. Thermal protection concepts and issues for aerocapture at titan[C]//AIAA Meeting Papers. Huntsville:American Institute of Aeronautics and Astronautics (AIAA), 2003.
[38] PULCI G, TIRILLÒ J, MARRA F, et al. Carbon-phenolic ablative materials for re-entry space vehicles:manufacturing and properties[J]. Composites:Part A, 2010, 41(10):1483-1490.
[39] STELTZNER A D, MIGUEL SAN MARTIN A, RIVELLINI T P, et al. Mars science laboratory entry, descent, and landing system development challenges[J]. Journal of Spacecraft and Rockets, 2014, 51(4):994-1003.
[40] TRAN H, JOHNSON C, RASKY D, et al. Phenolic impregnated carbon ablators (PICA) for discovery class missions[C]//AIAA Meeting Papers. New Orleans:American Institute of Aeronautics and Astronautics (AIAA), 1996.
[41] 王筠,杨云华,冯志海. 深空探测用热防护材料的现状及发展方向[J]. 宇航材料工艺, 2013, 43(5):1-10. WANG Y, YANG Y H, FENG Z H. Current status and further trend of thermal protection materials for deep space exploration[J]. Aerospace Materials & Technology, 2013, 43(5):1-10.
[42] TRAN H, JOHNSON C, RASKY D, et al. Silicone impregnated reusable ceramic ablators for Mars follow-on missions[C]//AIAA Meeting Papers on Disc, New Orleans. LA:American Institute of Aeronautics and Astronautics (AIAA), 1996.
[43] 程海明,洪长青,张幸红. 低密度烧蚀材料研究进展[J]. 哈尔滨工业大学学报, 2018, 50(5):1-11. CHENG H M, HONG C Q, ZHANG X H. An overview on low-density ablators[J]. Journal of Harbin Institute of Technology, 2018, 50(5):1-11.
[44] 韩杰才,洪长青,张幸红,等. 新型轻质热防护复合材料的研究进展[J]. 载人航天, 2015(4):315-321. HAN J C, HONG C Q, ZHANG X H, et al. Research progress of novel lightweight thermal protection composites[J]. Manned Spaceflight, 2015(4):315-321.
[45] 朱召贤,董金鑫,贾献峰,等. 酚醛气凝胶/炭纤维复合材料的结构与烧蚀性能[J]. 新型炭材料, 2018, 33(4):90-96. ZHU Z X, DONG J X, JIA X F, et al. The microstructure and ablation behavior of carbon fiber/phenolic aerogel composites[J]. New Carbon Materials, 2018, 33(4):90-96.
[46] 师建军,孔磊,左小彪,等. 酚醛/SiO2双体系凝胶网络结构杂化气凝胶的制备与性能[J]. 高分子学报, 2018(10):58-65. SHI J J, KONG L, ZUO X B, et al. Preparation of PR/SiO2 hybrid phenolic aerogel with bi-component gel networks[J]. Acta Polymerica Sinica, 2018(10):58-65.
[47] 师建军,严蛟,孔磊,等. 基于普通酚醛树脂有机气凝胶的高效制备与研究[J]. 高分子学报, 2016(2):179-186. SHI J J, YAN J, KONG L, et al. Facile preparation and study of the organic aerogel based on conventional phenolic resins[J]. Acta Polymerica Sinica, 2016(2):179-186.
[48] 师建军,张宗波,冯志海,等. 低密度碳粘接碳纤维复合材料(CBCF)抗氧化改性研究[J]. 无机材料学报, 2018, 33(7):728-734. SHI J J, ZHANG Z B, FENG Z H, et al. Study on the modification of oxidation resistance for low density car-bon-bonded carbon fiber (CBCF) composite[J]. Journal of Inorganic Materials, 2018, 33(7):728-734.
[49] 毛科铸,罗丽娟,梁馨,等. 硅橡胶涂覆织物的阻燃和烧蚀性能[J]. 宇航材料工艺, 2017, 47(5):31-34. MAO K Z, LUO L J, LIANG X, et al. Flame retardant property and ablation property of flexible ablation thermal protection material[J]. Aerospace Materials & Technology, 2017, 47(5):31-34.
[50] 罗丽娟,梁馨,邓火英,等. 辐射/烧蚀交替型柔性防热复合材料[J]. 宇航材料工艺, 2016, 46(4):21-24. LUO L J, LIANG X, DENG H Y, et al. Radiation/ablation flexible thermal protection materials[J]. Aerospace Materials & Technology, 2016, 46(4):21-24.
[51] BESSIRE B K, LAHANKAR S A, MINTON T K. Pyrolysis of phenolic impregnated carbon ablator (PICA)[J]. ACS Applied Materials & Interfaces, 2015, 7(3):1383-1395.
[52] 柳云钊,师建军,王筠,等. PICA中的酚醛树脂热分解机理[J]. 宇航材料工艺, 2016, 46(6):68-73. LIU Y Z, SHI J J, WANG Y, et al. Pyrolysis mechanism of PICA phenolics[J]. Aerospace Materials & Technology, 2016, 46(6):68-73.
[53] WONG H, PECK J, ASSIF J, et al. Quantitative determination of species production from the pyrolysis of the phenolic impregnated carbon ablator (PICA)[C]//AIAA SciTech Forum, Kissimmee. FL:American Institute of Aeronautics and Astronautics (AIAA), 2015.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 余煜玺, 马锐, 王贯春, 张瑞谦, 彭小明. 高比表面积、低密度块状Al2O3气凝胶的制备及表征[J]. 材料工程, 2019, 47(12): 136-142.
[3] 代军, 晏华, 桑练勇, 胡志德, 张寒松. 基于改进主成分分析法的低密度聚乙烯光氧老化行为及综合评价模型[J]. 材料工程, 2018, 46(6): 141-147.
[4] 刘洪丽, 邓青沂, 褚鹏. 超临界干燥制备PSNB气凝胶及其超疏水性能研究[J]. 材料工程, 2018, 46(2): 22-26.
[5] 余煜玺, 马锐. SiC微/纳米纤维毡增强SiO2气凝胶复合材料的制备和表征[J]. 材料工程, 2018, 46(11): 45-50.
[6] 余煜玺, 朱孟伟. 高球形度、高比表面积SiO2/TiO2气凝胶小球的制备和表征[J]. 材料工程, 2017, 45(2): 7-11.
[7] 查柏林, 高双林, 林浩, 罗雷, 张博文, 朱杰堂, 孙振生. 烧蚀角度对C/C复合材料烧蚀行为的影响[J]. 材料工程, 2017, 45(2): 54-59.
[8] 查柏林, 林浩, 高双林, 罗雷, 张博文, 朱杰堂, 孙振生. 粒子浓度对C/C复合材料烧蚀行为的影响[J]. 材料工程, 2016, 44(7): 93-98.
[9] 余煜玺, 吴晓云, 伞海生. 常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征[J]. 材料工程, 2015, 43(8): 31-36.
[10] 王兵, 谭毅, 施伟, 李佳艳, 尤启凡. 硅蒸镀法制备低密度C/C复合材料表面SiC涂层[J]. 材料工程, 2015, 43(2): 1-6.
[11] 房光强, 沈登雄, 栗付平, 李华, 杨海霞, 刘金刚, 杨士勇. 聚酰亚胺/SiO2纳米复合抗原子氧气凝胶的合成与性能[J]. 材料工程, 2015, 43(12): 17-23.
[12] 王玲玲, 马文闵, 嵇阿琳, 崔红, 闫联生, 黄剑. C/C多孔体对C/C-SiC复合材料制备及性能的影响[J]. 材料工程, 2014, 0(7): 34-38.
[13] 段远源, 于海童, 王晓东, 赵俊杰. 含水量及相关散射对气凝胶辐射传热的影响[J]. 材料工程, 2014, 0(2): 65-69.
[14] 魏化震, 李莹, 安振河. ZrB2和POSS对碳布/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2014, 0(11): 38-42.
[15] 吕鹏鹏, 赵海雷, 刘欣, 李兴旺. 常压干燥制备SiO2气凝胶的研究[J]. 材料工程, 2012, 0(4): 22-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn