Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (8): 25-32    DOI: 10.11868/j.issn.1001-4381.2020.000207
  复合材料专栏 本期目录 | 过刊浏览 | 高级检索 |
高分子复合材料在装甲防护领域的研究与应用进展
魏化震, 钟蔚华, 于广
中国兵器工业集团 第五三研究所, 济南 250031
Research and application progress of polymer composites in armor protection
WEI Hua-zhen, ZHONG Wei-hua, YU Guang
Institute 53 of China Ordnance Industry Group, Jinan 250031, China
全文: PDF(779 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 具有高比强度和高比吸能特点的纤维增强树脂基复合材料等非金属材料是装甲装备实现轻量化、强防护的关键材料。针对装甲装备防护构件对高性能抗弹材料的需求,本文综述了高分子复合材料在装甲防护领域的技术进展、应用现状及发展趋势,重点讨论了高性能纤维增强树脂基复合材料在复合装甲、结构装甲、多功能防护构件及聚合物透明材料在透明装甲上的应用,对比分析了我国芳纶Ⅱ、芳纶Ⅲ、PBO、PIPD等高品级有机纤维的研发及应用现状,提出依据纤维技术成熟度和制造成本不同实行系列化发展,用于近、中、远期装甲装备防护结构的基本设想,以及未来加强石墨烯抗弹材料、智能装甲材料等前沿新兴装甲防护材料及其机理研究,建立完善材料评价方法、作用机制模型和数据库。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏化震
钟蔚华
于广
关键词 纤维复合材料装甲防护透明装甲研究进展    
Abstract:Non-metallic materials such as fiber reinforced resin matrix composites with high specific strength and high specific energy absorption are the key material technologies to realize lightweight and strong protection of armor equipment. Aiming at the requirement of armored equipment protective components for high-performance ballistic materials, the technical progress, application status and development trend of polymer composite in the field of armor protection were summarized. The application of fiber reinforced resin matrix composites in composite armor, structural armor, multi-functional protective components and transparent polymer materials in transparent armor was discussed. Comparative analysis on the development and application status of high-grade organic fibers such as aramid Ⅱ, aramid Ⅲ, PBO, PIPD in China was carried out. A series of developments based on the maturity of fiber technology and different manufacturing costs, meeting the requirements of the near-term, mid-term, long-term armored equipment protection structure were proposed,and suggestions to strengthen the research on graphene ballistic materials, smart armor materials and other cutting-edge emerging protective materials and their mechanisms, and to establish and improve material evaluation methods, mechanism models and databases in the future were put forward.
Key wordsfiber    composite material    armor protection    transparent armor    research progress
收稿日期: 2020-03-12      出版日期: 2020-08-15
中图分类号:  TB332  
通讯作者: 钟蔚华(1975-),男,研究员,研究方向:抗弹复合材料,联系地址:山东省济南市天桥区田家庄东路3号第五三研究所一室(250031),E-mail:13854195750@163.com     E-mail: 13854195750@163.com
引用本文:   
魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
WEI Hua-zhen, ZHONG Wei-hua, YU Guang. Research and application progress of polymer composites in armor protection. Journal of Materials Engineering, 2020, 48(8): 25-32.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000207      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/25
[1] BENZAIT Z,RABZON L.A review of recent research on materials used in polymer-matrix composites for body armor application[J].Journal of Composite Materials,2018,52(23):3241-3263.
[2] 高华,熊超,殷军辉.纤维增强复合材料防弹装甲抗侵彻性能研究[J].飞航导弹,2018(2):91-94. GAO H,XIONG C,YIN J H.Research on penetration resistance of fiber reinforced composite bulletproof armor[J].Air Missile,2018(2):91-94.
[3] 焦亚男,何业茂,周庆,等.纤维增强树脂基复合材料防弹性能影响因素及破坏机制[J].复合材料学报,2017,34(9):1960-1972. JIAO Y N,HE Y M,ZHOU Q,et al.Factors influencing the bu-lletproof performance of fiber-reinforced resin matrix composites and failure mechanism[J].Journal of Composites,2017,34(9):1960-1972.
[4] 周亮,肖精华,黄叶萍.复合装甲材料研究新动向[J].国防技术基础,2017(1):29-33. ZHOU L,XIAO J H,HUANG Y P.New trends in composite armor materials research[J].Foundation of National Defense Technology,2017(1):29-33.
[5] 曹凌宇,罗兴柏,刘国庆,等.国外新型装甲防护技术综述[J].飞航导弹,2018(9):74-78. CAO L Y,LUO X B,LIU G Q,et al.Review of new foreign armored protection technology[J].Air Missile,2018(9):74-78.
[6] LIU X,LI M,LI X,et al.Ballistic performance of UHMWPE fabrics/EAMS hybrid panel[J].Journal of Materials Science,2018,53(10):7357-7371.
[7] SHEN Z,HU D,ZHANG Y,et al.Continuous twice-impacts ana-lysis of UHMWPE laminate fixed with bolted joints[J].International Journal of Impact Engineering,2017,109:293-301.
[8] DOGAN A,ARIKAN V.Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich compo-sites[J].Composites Part B:Engineering,2017,127:63-69.
[9] 徐鲁杰,李想,马武伟.纤维增强复合材料装甲防护性能影响因素分析研究[J].材料开发与应用,2017,32(2):47-53. XU L J,LI X,MA W W.Analysis and research on influencing factors of armor protection performance of fiber reinforced compo-sites[J].Materials Development and Application,2017,32(2):47-53.
[10] BOGETTI T A,WALTER M,STANISZEWSKI J,et al.Interlaminar shear characterization of ultra-high molecular weight polyethylene (UHMWPE) composite laminates[J].Composites Part A:Applied Science and Manufacturing,2017,98:105-115.
[11] NAGHIZADEH Z,FAEZIPOUR M,POL M H,et al.Improvement in impact resistance performance of glass/epoxy composite through carbon nanotubes and silica nanoparticles[J].Procee-dings of the Institution of Mechanical Engineers, Part L:Journal of Materials:Design and Applications,2018,232(9):785-799.
[12] BALALI E,KORDANI N,SADOUGH V A.Response of glass fiber-reinforced hybrid shear thickening fluid (STF) under low-velocity impact[J].The Journal of the Textile Institute,2017,108(3):376-384.
[13] 刘建勋,祖群,朱建勋,等. 新型高强度玻璃纤维制备及其增强环氧树脂性能[J]. 航空制造技术,2010(17):75-77. LIU J X,ZU Q,ZHU J X,et al. Preparation of new high-strength glass fiber and performance of reinforced epoxy resin[J]. Aeronautical Manufacturing Technology,2010(17):75-77.
[14] 陈虹,虎龙,艾青松,等.芳纶复合材料在防弹车上的应用研究[J].中国个体防护装备,2017(2):5-8. CHEN H,HU L,AI Q S,et al.Research on the application of aramid fiber composites in bulletproof vehicles[J].China Indivi-dual Protective Equipment,2017(2):5-8.
[15] BANDARU A K,AHMAD S,BHATNAGAR N.Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics[J].Composites Part A:Applied Science and Manufacturing,2017,97:151-165.
[16] 李亚锋,礼嵩明,黑艳伟,等.太阳辐照对芳纶纤维及其复合材料性能的影响[J].材料工程,2019,47(4):39-46. LI Y F,LI S M,HEI Y W,et al.Effects of solar irradiation on the properties of aramid fiber and its composites[J].Journal of Materials Engineering,2019,47(4):39-46.
[17] XU C,WANG Y,WU J,et al.Anti-impact response of Kevlar sandwich structure with silly putty core[J].Composites Science and Technology,2017,153:168-177.
[18] VALLEE P,ENG P. Armour system literature and industry survey for ballistic protection[M]. Quebec,Canada:CMC,1998:50-60.
[19] ROY R,LAHA A,AWASTHI N,et al.Multi layered natural rubber coated woven P-aramid and UHMWPE fabric composites for soft body armor application[J].Polymer Composites,2018,39(10):3636-3644.
[20] Da SILVA F A B-H,JÚNIOR L,PEREIRAÉ,et al.Response to ballistic impact of alumina-UHMWPE composites[J].Materials Research,2018,21(5):131-144.
[21] ZHOU Y,LI G,FAN Q,et al.Study on protection mechanism of 30CrMnMo-UHMWPE composite armor[J].Materials,2017,10(4):405-416.
[22] PRIYANKA P,DIXIT A,MALI H S.High-strength hybrid textile composites with carbon, Kevlar, and E-glass fibers for impact-resistant structures.a review[J].Mechanics of Composite Materials,2017,53(5):685-704.
[23] HU D,ZHANG Y,SHEN Z,et al.Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J].Ceramics International,2017,43(13):10368-10376.
[24] LAI X,GUO R,XIAO H,et al.Flexible conductive copper/reduced graphene oxide coated PBO fibers modified with poly (dopamine)[J].Journal of Alloys and Compounds,2019,788:1169-1176.
[25] LAI X,GUO R,LAN J,et al.Flexible reduced graphene oxide/electroless copper plated poly (benzo)-benzimidazole fibers with electrical conductivity and corrosion resistance[J].Journal of Materials Science:Materials in Electronics,2019,30(3):1984-1992.
[26] HAO W Z,ZHANG X J,TIAN Y H.Thermal, mechanical, and microstructural study of PBO fiber during carbonization[J].Materials,2019,12(4):608.
[27] LI M,DONG J,ZHENG S,et al.Fabrication of poly (bis-benzimidazole imide) fibers with enhanced mechanical properties and high limit oxygen indexes[J].Polymer Testing,2019,76:222-231.
[28] TANG Y S,DONG W C,TANG L,et al.Fabrication and investigations on the polydopamine/KH-560 functionalized PBO fibers/cyanate ester wave-transparent composites[J].Composites Co-mmunications,2018,8:36-41.
[29] LUO L,HONG D,ZHANG L,et al.Surface modification of PBO fibers by direct fluorination and corresponding chemical reaction mechanism[J].Composites Science and Technology,2018,165:106-114.
[30] HU Z,SHAO Q,HUANG Y,et al.Light triggered interfacial damage self-healing of poly (p-phenylene benzobisoxazole) fiber composites[J].Nanotechnology,2018,29(18):526-529.
[31] LI J,WANG W,ZHAO L,et al.In situ synthesis of PBO-α-(amino phthalocyanine copper) composite fiber with excellent UV-resistance and tensile strength[J].Journal of Applied Polymer Science,2018,135(48):46870.
[32] 何烨,肖建文,姚烛威,等.碳纤维表面物理结构对复合材料界面剪切强度的影响[J].材料工程,2019,47(2):146-152. HE Y,XIAO J W,YAO Z W,et al.Effects of surface physical structure of carbon fiber on interfacial shear strength of compo-sites[J].Journal of Materials Engineering,2019,47(2):146-152.
[33] YANG Y,CHEN X.Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design[J].Composite Structures,2017,174:233-243.
[34] HARO E E,ODESHI A G,SZPUNAR J A.The effects of micro-and nano-fillers' additions on the dynamic impact response of hybrid composite armors made of HDPE reinforced with Kevlar short fibers[J].Polymer-Plastics Technology and Engineering,2018,57(7):609-624.
[35] SAFRI S N A,SULTAN M T H,JAWAID M,et al.Impact behaviour of hybrid composites for structural applications:a review[J].Composites Part B:Engineering,2018,133:112-121.
[36] LARSSON F,SVENSSON L. Carbon,polyethylene and PBO hybrid fibre composites for structural lightweight armour[J]. Composites:Part A,2002,33:221-231.
[37] SHIH Y F,CHOU M Y,LIAN H Y,et al.Highly transparent and impact-resistant PMMA nanocomposites reinforced by cellulose nanofibers of pineapple leaves modified by eco-friendly methods[J].Express Polymer Letters,2018,12(9):844-854.
[38] JIANG L,HE J,SUN J.Sample width and thickness effects on upward flame spread over PMMA surface[J].Journal of Hazar-dous Materials,2018,342:114-120.
[39] SNYDER R L,FORTMAN D J,De HOE G X,et al.Reprocessable acid-degradable polycarbonate vitrimers[J].Macromolecules,2018,51(2):389-397.
[40] LUO F,LIU X,SHAO C,et al.Micromechanical analysis of molecular orientation in high-temperature creep of polycarbonate[J].Materials & Design,2018,144:25-31.
[41] DURANTE M,FORMISANO A,LAMBIASE F.Incremental forming of polycarbonate sheets[J].Journal of Materials Processing Technology,2018,253:57-63.
[42] DANILAEV M P,BOGOSLOV E A,KUKLIN V A,et al.Structure and mechanical properties of a dispersedly filled transparent polycarbonate[J].Mechanics of Composite Materials,2019,55(1):53-62.
[43] WANG X,ZHANG W,QIN Z,et al.Optically transparent and flame-retarded polycarbonate nanocomposite based on diphenylphosphine oxide-containing polyhedral oligomeric silsesquioxanes[J].Composites Part A:Applied Science and Manufacturing,2019,117:92-102.
[44] CHANG K,JIA H,GU S.A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds[J].European Polymer Journal,2019,112:822-831.
[45] JIAN X,HU Y,ZHOU W,et al.Self-healing polyurethane based on disulfide bond and hydrogen bond[J].Polymers for Advanced Technologies,2018,29(1):463-469.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[6] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[7] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[8] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[9] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[10] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[11] 芦刚, 查军辉, 严青松, 宋方睿, 于航. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48(7): 170-175.
[12] 孙莉莉, 吴南, 彭睿. 拉伸处理对碳纳米纤维/聚偏氟乙烯复合材料结晶行为和AC导电性能的影响[J]. 材料工程, 2020, 48(6): 106-111.
[13] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[14] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[15] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn