Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (8): 33-48    DOI: 10.11868/j.issn.1001-4381.2020.000208
  复合材料专栏 本期目录 | 过刊浏览 | 高级检索 |
国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展
包建文1,2,3, 钟翔屿1,2,3, 张代军2,4, 彭公秋1,3, 李伟东1,2,3, 石峰晖1,3, 李晔1,2,3, 姚锋1,3, 常海峰1,3
1. 航空工业复合材料技术中心, 北京 101300;
2. 先进复合材料国防科技重点实验室, 北京 100095;
3. 中航复合材料有限责任公司, 北京 101300;
4. 中国航发北京航空材料研究院, 北京 100095
Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in China
BAO Jian-wen1,2,3, ZHONG Xiang-yu1,2,3, ZHANG Dai-jun2,4, PENG Gong-qiu1,3, LI Wei-dong1,2,3, SHI Feng-hui1,3, LI Ye1,2,3, YAO Feng1,3, CHANG Hai-feng1,3
1. AVIC Composite Center, Beijing 101300, China;
2. National Key Laboratory of Advanced Composites, Beijing 100095, China;
3. AVIC Composite Corporation Ltd., Beijing 101300, China;
4. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(5901 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 高强中模碳纤维增强复合材料是当前及未来相当长时期内主要的航空结构复合材料。借鉴国外高强中模碳纤维及其高韧性复合材料发展经验,在国内高强型碳纤维复合材料成熟经验的基础上,实现了高强中模T800级碳纤维规模化生产,系统分析了与国产高强中模碳纤维匹配的树脂基体、预浸料及其复合材料技术现状。国产T800H级碳纤维增强高韧性环氧树脂基和双马树脂基复合材料抗冲击性能达到国外同类复合材料的水平,高韧性环氧树脂基复合材料的耐湿热性能优于国外同等韧性的复合材料。国产T800H级碳纤维增强高韧性复合材料预浸料具有优异的工艺性能,可同时满足手工铺贴、自动铺带和自动铺丝3种铺放工艺要求。在T800级复合材料成熟应用的基础上,未来主要发展高压缩强度、高模量和基于BVID的高冲击韧性高强中模碳纤维复合材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
包建文
钟翔屿
张代军
彭公秋
李伟东
石峰晖
李晔
姚锋
常海峰
关键词 高强中模碳纤维高韧性树脂基复合材料冲击后压缩强度自动铺带工艺自动铺丝工艺    
Abstract:High strength intermediate modulus carbon fiber composites are still the main aviation composites in the world at present and for a long time to come. In recent year, based on the experience of high-strength carbon fiber composites, the industrialization technology of high strength intermediate modulus T800 grade carbon fiber have been broken through in China, and the resin matrix, prepreg and manufacturing process were analysized systematically for the high toughness composites reinforced by Chinese T800 grade carbon fiber. The impact resistance of the resin matrix composites reinforced by Chinese T800H grade carbon fiber is at the same level with that of foreign composites, and the hydrothermal resistance of high toughness epoxy resin matrix composites is better than that of foreign composites with the same CAI level. At the same time, the prepreg of Chinese T800H grade carbon fiber reinforced high toughness composites has excellent process ability, and it can meet the requirements of manual-layup, ATL and AFP. Based on the T800 grade composites, the main research goal is to improve the compression mechanical properties, elastic modulus and CAI based on BVID(barely visible impact damage) for high strength intermediate modulus carbon fiber composites in the future.
Key wordshigh strength intermediate modulus carbon fiber    high toughness resin matrix composites    compressive strength after impact (CAI)    automated fiber placement (AFP)    automated tape laying (ATL)
收稿日期: 2020-03-12      出版日期: 2020-08-15
中图分类号:  TB332  
通讯作者: 包建文(1969-),男,研究员,博士,航空工业树脂基复合材料首席专家,主要研究方向:碳纤维增强高韧性树脂基复合材料、耐高温聚酰亚胺树脂基复合材料、液体成型复合材料等高性能复合材料及其成型工艺,联系地址:北京市顺义区时俊南街航空工业复合材料技术中心(101300),E-mail:13693594304@qq.com     E-mail: 13693594304@qq.com
引用本文:   
包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
BAO Jian-wen, ZHONG Xiang-yu, ZHANG Dai-jun, PENG Gong-qiu, LI Wei-dong, SHI Feng-hui, LI Ye, YAO Feng, CHANG Hai-feng. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in China. Journal of Materials Engineering, 2020, 48(8): 33-48.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000208      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/33
[1] 贺福,赵建国,王润娥.粘胶基碳纤维[J].化工新型材料,1999(1):3-10. HE F,ZHAO J G,WANG R E.Rayon carbon fiber[J].New Chemical Materials,1999(1):3-10.
[2] 《高科技纤维与应用》编辑部.沥青基碳纤维[J].高科技纤维与应用,2011,36(2):70-75. Hi-Tech Fiber and Application Editorial Office.Pitch based carbon fiber[J].Hi-Tech Fiber and Application,2011,36(2):70-75.
[3] MINUS M,KUMAR S.The processing,properties,and structure of carbon fibers[J].The Journal of The Minerals,2005,57(2):52-58.
[4] NEWCOMB B A.Processing,structure,and properties of carbon fibers[J].Composites:Part A, 2016,91:262-282.
[5] 徐樑华,王宇.国产高性能聚丙烯腈基碳纤维技术特点及发展趋势[J].科技导报,2018, 36(19):43-51. XU L H,WANG Y.Technical characteristics and development trend of polyacrylonitrile-based high performance carbon fiber in China[J].Science &Technology Review,2018,36(19):43-51.
[6] 张凤翻.复合材料用预浸料(5)[J].高科技纤维与应用,2000,25(6):30-34. ZHANG F F.Prepreg for composite material (5)[J].Hi-Tech Fiber and Application,2000,25(6):30-34.
[7] Teijin Carbon Europe GMBH.TenaxTM filament yarn,Teijin product data sheet,Version 27[EB/OL] (2018-06-27)[2020-2-28]. https://www.teijincarbon.com/fileadmin/PDF/Datenblätter_en/Product_Data_Sheet_EU_Filament_.pdf.
[8] 徐坚."从无到有"到"从有到优"的"卡脖子"军民两用关键材料突破-回顾师昌绪先生在高性能碳纤维国产化战略决策中的作用[J].科技导报,2018,36(19):26-31. XU J.The key material breakthrough of "dual-necks" from scratch to excellent:review of Shi Changxu's role in strategic decision making of high performance carbon fiber localization[J].Science & Technology Review,2018,36(19):26-31.
[9] 刘瑞刚,徐坚.国产高性能聚丙烯腈基碳纤维制备技术研究进展[J].科技导报,2018,36(19):32-42. LIU R G,XU J.Recent progress in high performance PAN based carbon fibers[J].Science & Technology Review,2018,36(19):32-42.
[10] 徐樑华.碳纤维国产化现状与技术发展前景分析[J].江苏建材,2018(5):17-21. XU L H.Carbon fiber industrial technology status and development prospects in China[J]. Jiangsu Building Materials,2018(5):17-21.
[11] 李书乡,马全胜,张顺.中国高性能碳纤维产业的创新发展[J].科技导报,2018,36(19):73-80. LI S X,MA Q S,ZHANG S.Development of high performance carbon fiber industry in China[J].Science & Technology Review,2018,36(19):73-80.
[12] 益小苏,张明,安学锋,等.先进航空树脂基复合材料研究与应用进展[J].工程塑料应用, 2009,37(10):72-76. YI X S, ZHANG M, AN X F,et al.Development and application of advanced aeronautical polymer matrix composites[J].Engineering Plastics Application,2009,37(10):72-76.
[13] MILLER A G,LOVELL D T,SEFERIS J C.The evolution of an aerospace material:influence of design, manufacturing and in-service performance[J].Composites Structure,1994,27(1/2):193-206.
[14] MATSUI J. Polymer matrix composites (PMC) in aerospace[J].Advanced Composite Materials,1995,4(3):197-208.
[15] National Institute for Aviation Research (Wichita State University).Composite materials handbook-17(CMH-17)Vol 2[M].Wichita:SAE International,2012.
[16] 益小苏,许亚洪,程群峰,等.航空树脂基复合材料的高韧性化研究进展[J].科技导报, 2008, 26(6):84-92. YI X S,XU Y H,CHENG Q F,et al.Development of studies on polymer matrix aircraft composite materials highly toughened[J].Science & Technology Review,2008,26(6):84-92.
[17] 刘善国.国外飞机先进复合材料技术[J].航空制造技术,2014(19):26-31. LIU S G.Advanced composite technology of foreign aircraft[J].Aeronautical Manufacturing Technology,2014(19):26-31.
[18] SWANSON S R,QIAN Y.Multiaxial characterization of T800/3900-2 carbon/epoxy composites[J].Composites Science and Technology,1992,43(2):197-203.
[19] BUYNY R A.Bismaleimide prepreg systems:US2007134480[P].2007-06-14.
[20] BONNEAU M R,BOYD J D,EMMERSON G T,et al.Particle-toughened fiber-reinforced polymer composites:US20120052287[P].2012-11-20.
[21] RAKUTT D,FITZER E,STENZENBERGER H D.The fracture toughness and morphology spectrum of bismaleimide/polyetherimide moulding compounds[J].High Perform Polymer,1990,2(2):133-147.
[22] IREDALER J,WARD C,HAMERTON I.Modern advances in bismaleimide resin technology:a 21st century perspective on the chemistry of addition polyimides[J].Progress in Polymer Science, 2017,69:1-21.
[23] LAVERY D,BOYD J.New generations bismaleimides for aircraft structure[J].Materials Challenge:Diversification and the Future,1995,40:632-644.
[24] CANO R J, DOW M B.Properties of five toughened matrix composite materials[R]. Hampton, VA:NASA Langley Research Center,1992.
[25] Composites World.Resins for the hot zone,part Ⅱ:BMIs,CEs,benzoxazines and phthalonitriles[EB/OL] (2018-09-25)[2020-2-28].https://www.compositesworld.com/articles/resins-for-the-hot-zone-part-ii-bmis-ces-benzoxazines-and-phthalonitriles.
[26] Composites World.Lockheed Martin extends Cytec contract for F-35 prepreg[EB/OL] (2018-09-25)[2020-2-28].https://www.compositesworld.com/news/lockheed-martin-extends-cytec-contract-for-f-35-prepreg.
[27] POOLE E,LIN K,BACKMAN B.Effects of aging on compressive strength of composites after impact[C]//35th Structures,Structural Dynamics,and Materials Conference.1993:1532.
[28] SHIMOKAWA T,KATOH H,HAMAGUCHI Y,et al.Effects of thermal cycling on degradation of high temperature polymer composite materials for the next-generation SST structure[C]//Proc Ninth United State-Japan Conf Compos Mater.2000:355-362.
[29] KOBAYASHI S,TAKEDA N.Experimental characterization of microscopic damage behavior in carbon/bismaleimide composite-effects of temperature and laminate configuration[J].Composites:Part A,2002,33(11):1529-1538.
[30] 包建文,唐邦铭,沈宝华.5228/T800复合材料力学性能研究[J].纤维复合材料,1997(4):28-31. BAO J W,TANG B M,SHEN B H.Study on the mechanical properties of 5228/T800 composites[J].Fiber Composites,1997(4):28-31.
[31] 王迎芬,彭公秋,李国丽,等.T800H碳纤维表面特性及T800H/BA9918复合材料湿热性能研究[J].材料科学与工艺,2015,23(4):115-120. WANG Y F,PENG G Q,LI G L,et al.Study on surface characteristic of T800H carbon fiber and hygrothermal performance of T800H/BA9918 composite[J].Materials Science and Technology,2015,23(4):115-120.
[32] 李斌太,邢丽英,包建文,等.先进复合材料国防科技重点实验室的航空树脂基复合材料研发进展[J].航空材料学报,2016,36(3):92-100. LI B T,XING L Y,BAO J W,et al.Research and development progress of National Key Laboratory of Advanced Composites on advanced aeronautical resin matrix composites[J].Journal of Aeronautical Materials,2016,36(3):92-100.
[33] Hexcel Corporation.HexPly® M21180℃ (350°F) curing epoxy matrixproduct datasheet[EB/OL] (2015)[2020-2-28]. https://www.hexcel.com/user_area/content_media/raw/HexPly_M21_global_DataSheet.pdf.
[34] Cytec Engineered Materials Company.CYCOM 5250-4 prepreg system technical data sheet[EB/OL] (2017-10-24)[2020-2-28].https://www.solvay.com/en/product/cycom-5250-4.
[35] WANG R M,LI B.The properties of T300/5405 bismaleimide composite[J].Aerospace Materials & Technology,1995,25(2):34-37.
[36] 陈祥宝.聚合物基复合材料手册[M].北京:化学工业出版社,2004. CHEN X B.Handbook of polymer matrix composites[M].Beijing:Chemical Industry Press,2004.
[37] 张宝艳,陈祥宝,李敏,等.碳纤维增强双马来酰亚胺树脂基复合材料体系冲击后压缩强度研究[J].航空材料学报,2002,22(1):36-40. ZHANG B Y,CHEN X B,LI M,et al.Investigation on compression strength after impact of carbon fiber reinforced bismaleimide resin matrix composite[J].Journal of Aeronautical Materials,2002,22(1):36-40.
[38] 拉德C D.复合材料液体模塑成型技术[M].北京:化学工业出版社,2004. RUDD C D.Liquid moulding technologies[M].Beijing:Chemical Industry Press,2004.
[39] Cytec Engineered Materials Company.PRISMTM EP2400 resin system technical data sheet[EB/OL] (2017-01-12)[2020-2-28].https://www.solvay.com/en/product/prism-ep2400.
[40] GIRARD Y H,BERAUD J M.HiTape (R) dry preform technology-an efficient composite automation technology for primary aircraft structures[J].Sampe Journal,2015,51:7-15.
[41] LUKASZEWICZ D H,WARD C,POTTER K D.The engineering aspects of automated prepreg layup:history,present and future[J].Composites:Part B,2012,43(3):997-1009.
[42] MCILHAGGER A,ARCHER E,MCILHAGGER R.Manufacturing processes for composite materials and components for aerospace applications[M]//Polymer Composites in the Aerospace Industry.Cambridge:Woodhead Publishing,2020:59-81.
[43] 蒋诗才,邢丽英,陈祥宝.复合材料预浸料自动铺带成型适宜性研究[J].武汉理工大学学报,2009,31(21):50-53. JIANG S C,XING L Y,CHEN X B.Research on molding suitability of prepreg composites for automated tape performance[J]. Journal of Wuhan University of Technology,2009,31(21):50-53.
[44] 卢鑫,刘军,张冬梅.不同工艺参数对自动铺带碳纤维层压板的性能影响[J].纤维复合材料,2018,35(3):66-69,75. LU X,LIU J,ZHANG D M.The effect of different processing parameters of automated tape laying for the properties of carbon fiber composite laminates[J].Fiber Composites,2018,35(3):66-69,75.
[45] WOIGK W,HALLETSR,JONESMI,et al.Experimental investigation of the effect of defects in automated fibreplacement produced composite laminates[J].Composite Structures,2018,201:1004-1017.
[46] 张博明,王洋,叶金蕊.自动铺放工艺的复合材料预浸带的适宜性评价方法[J].航空制造技术,2012(11):70-73. ZHANG B M,WANG Y,YE J Y.Assessment method for suitability of composites prepreg for automated tape laying[J].Aeronautical Manufacturing Technology,2012(11):70-73.
[47] CHAE H G,NEWCOMB B A,PRAMANIK C,et al.High strength and high modulus carbon fibers[J].Carbon,2015,93:81-87.
[48] Hexcel Corporation.HexTow HM50 carbon fiberproduct datasheet[EB/OL] (2019)[2020-2-28].https://www.hexcel.com/user_area/content_media/raw/HexTowSelectorGuide.pdf.
[1] 南文争, 燕绍九, 彭思侃, 王晨, 王继贤. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48(11): 108-115.
[2] 姚彧敏, 李红, 刘正启, 杨敏, 任慕苏, 孙晋良. 高导热碳/碳复合材料微观结构及导热性能[J]. 材料工程, 2020, 48(11): 155-161.
[3] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[4] 马绪强, 苏正涛. 民用航空发动机树脂基复合材料应用进展[J]. 材料工程, 2020, 48(10): 48-59.
[5] 徐学宏, 郑义珠, 陈吉平, 宁博. 缝合密度对缝合/VARI成型复合材料力学性能的影响[J]. 材料工程, 2020, 48(10): 68-73.
[6] 李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48(10): 74-81.
[7] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[8] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[9] 马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
[10] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[11] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[12] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[13] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[14] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[15] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn