Please wait a minute...
材料工程  2020, Vol. 48 Issue (8): 62-72    DOI: 10.11868/j.issn.1001-4381.2020.000210
  复合材料专栏 本期目录 | 过刊浏览 | 高级检索 |
陈利1,2, 焦伟1,2, 王心淼1,2, 刘俊岭1,2
1. 天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387;
2. 天津工业大学 纺织科学与工程学院, 天津 300387
Research progress on mechanical properties of 3D woven composites
CHEN Li1,2, JIAO Wei1,2, WANG Xin-miao1,2, LIU Jun-ling1,2
1. Key Laboratory of Advanced Textile Composites(Ministry of Education), Tiangong University, Tianjin 300387, China;
2. College of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
全文: PDF(7400 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 三维机织复合材料具有结构可设计性强、复杂构件整体近净成型、冲击损伤容限高等优点,成为航空航天领域新材料研制关注的重点。近年来,三维机织复合材料的结构设计、细观建模、性能分析等得到了快速的发展,并取得了实质性成果。多轴向机织结构的开发,精细化建模研究,自动化连续生产是三维机织复合材料的发展趋势。本文介绍了典型的三维机织预制体的结构特点,对比分析了不同预制体结构的三维机织复合材料的准静态力学性能,回顾了三维机织复合材料的细观结构建模、理论分析和数值模拟等方面的研究进展,列举了三维机织复合材料在航空航天领域的典型应用,为三维机织复合材料应用研究提供参考。
E-mail Alert
关键词 三维机织复合材料三维机织预制体细观结构力学分析数值模拟    
Abstract:The three-dimensional (3D) woven composites have the advantages of strong structural design ability, overall near-net shape of complex components and high impact damage tolerance, and have become the focus of the development of new materials in the aerospace industry. In recent years, the structural design, micro-modelling and performance analysis of 3D woven composites have been rapidly developed and achieved substantial achievement. The development of multi-axial woven structures, fine modeling, and automated continuous production are the development trends of 3D woven composites. In this paper, the structural characteristics of typical 3D woven preforms were introduced. The quasi-static mechanical properties of 3D woven composites with different structures were discussed. The research progress of the micro-structure modelling, theoretical analysis and numerical simulation of 3D woven composite materials were reviewed. The typical applications of 3D woven composite materials in aerospace were listed, which can provide reference for the application research of 3D woven composite materials.
Key words3D woven composite    3D woven preform    micro-structure    mechanical analysis    numerical simulation
收稿日期: 2020-03-12      出版日期: 2020-08-15
中图分类号:  TB332  
通讯作者: 陈利(1968-),男,教授,博士生导师,主要研究方向为先进纺织增强材料及其复合材料、三维纺织技术装备研发,联系地址:天津市西青区宾水西道399号天津工业大学纺织科学与工程学院(300387),     E-mail:
陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
CHEN Li, JIAO Wei, WANG Xin-miao, LIU Jun-ling. Research progress on mechanical properties of 3D woven composites. Journal of Materials Engineering, 2020, 48(8): 62-72.
链接本文:      或
[1] 陈利,赵世博,王心淼. 三维纺织增强材料及其在航空航天领域的应用[J].纺织导报,2018(增刊1):80-87. CHEN L, ZHAO S B, WANG X M. Development and application of 3D textile reinforcements in the aerospace field[J]. China Textile Leader, 2018(Suppl 1):80-87.
[2] 戎琦. 三维机织复合材料的织造技术[J]. 纤维复合材料, 2007, 24(1):31-33. RONG Q. Weaving technology of 3D woven composites[J]. Fiber Composites, 2007, 24(1):31-33.
[3] CHEN X, TAYLOR L W, TSAI L J. An overview on fabrication of three-dimensional woven textile preforms for composites[J]. Textile Research Journal, 2011, 81(9):932-944.
[4] 孙颖,王国军,张典堂,等. UHMWPE/乙烯基酯2.5 D角联锁机织复合材料动态压缩性能实验研究[J].材料工程,2011(4):38-42. SUN Y, WANG G J, ZHANG D T, et al. Experimental investigation on dynamic compression properties of UHMWPE/vinyl ester 2.5 dimensional angle interlocked woven composites[J]. Journal of Materials Engineering, 2011(4):38-42.
[5] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Open hole quasi-static and fatigue characterisation of 3D woven composites[J]. Composite Structures, 2015, 131:765-774.
[6] SUN B, NIU Z, JIN L, et al. Experimental investigation and numerical simulation of three-point bending fatigue of 3D orthogonal woven composite[J]. Journal of the Textile Institute, 2012, 103(12):1312-1327.
[7] HALLAL A, YOUNES R, FARDOUN F. Review and comparative study of analytical modeling for the elastic properties of textile composites[J]. Composites:Part B, 2013, 50:22-31.
[8] ANSAR M, XINWEI W, CHOUWEI Z. Modeling strategies of 3D woven composites:a review[J]. Composite Structures, 2011, 93(8):1947-1963.
[9] GEREKE T, CHERIF C. A review of numerical models for 3D woven composite reinforcements[J]. Composite Structures, 2019, 209:60-66.
[10] 张一帆,马明,陈利. 多层多向织物复合材料力学性能分析[J]. 宇航材料工艺, 2013, 43(2):31-34. ZHANG Y F, MA M, CHEN L. Mechanical properties of composites reinforced by multi-ply multi-axial preforms[J]. Aerospace Materials and Technology, 2013, 43(2):31-34.
[11] BILISIK K. Multiaxis three-dimensional weaving for composites:a review[J]. Textile Research Journal, 2012, 82(7):725-743.
[12] LABANIEH A R, LEGRAND X, KONCAR V, et al. Development in the multiaxis 3D weaving technology[J]. Textile Research Journal, 2016, 86(17):1869-1884.
[13] 陈利,张一帆,王心淼,等. 一种含斜向纱线的角联锁织物及其织造方法, CN106987979A[P/OL]. 2017-07-28[2019-05-06], CHEN L, ZHANG Y F, WANG X M, et al. Angle interlocking fabric with bias yarn and its method of manufacture, CN106987979A[P/OL]. 2017-07-28[2019-05-06],
[14] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites:Part A, 2015, 69:195-207.
[15] WARREN K C, LOPEZ-ANIDO R A, GOERING J. Experimental investigation of three-dimensional woven composites[J]. Composites:Part A, 2015, 73:242-259.
[16] SALEH M N, YUDHANTO A, POTLURI P, et al. Characterising the loading direction sensitivity of 3D woven composites:Effect of z-binder architecture[J]. Composites:Part A, 2016, 90:577-588.
[17] CASTANEDA N, WISNER B, CUADRA J, et al. Investigation of the Z-binder role in progressive damage of 3D woven composites[J]. Composites:Part A, 2017, 98:76-89.
[18] IVANOV D S, LOMOV S V, BOGDANOVICH A E, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. part 2:comprehensive experimental results[J]. Composites:Part A, 2009, 40(8):1144-1157.
[19] MAHADIK Y, HALLETT S R. Effect of fabric compaction and yarn waviness on 3D woven composite compressive properties[J]. Composites:Part A, 2011, 42(11):1592-1600.
[20] 仲苏洋. 三维机织复合材料损伤演化与失效行为研究[D]. 哈尔滨:哈尔滨工业大学, 2015. ZHONG S Y. Investigation of damage evolution and failure of the three-dimensional woven composites[D]. Harbin:Harbin Institute of Technology, 2015.
[21] ZHANG D, SUN M, LIU X, et al. Off-axis bending behaviors and failure characterization of 3D woven composites[J]. Composite Structures, 2019, 208:45-55.
[22] WALTER T R, SUBHASH G, SANKAR B V, et al. Monotonic and cyclic short beam shear response of 3D woven composites[J]. Composites Science and Technology, 2010, 70(15):2190-2197.
[23] 孙绯,陈利,孙颖,等. z向纱对三维正交复合材料层间剪切性能影响[J].固体火箭技术,2015,38(1):111-115. SUN F, CHEN L, SUN Y, et al. Effects of the z binder on interlaminar shearing properties of 3D orthogonal composites[J]. Journal of Solid Rocket Technology, 2015,38(1):111-115.
[24] BILISIK K. Multiaxis 3D woven preform and properties of multiaxis 3D woven and 3D orthogonal woven carbon/epoxy composites[J]. Journal of Reinforced Plastics and Composites, 2010, 29(8):1173-1186.
[25] 郭慧. 多层多向三维机织物细观结构研究[D]. 天津:天津工业大学, 2014. GUO H. Study on the microstructure of multi-layer and multi-axial three-dimensional woven fabrics[D]. Tianjin:Tianjin Poly-technic University, 2014.
[26] ISART N, MAYUGO J A, BLANCO N, et al. Geometric model for 3D through-thickness orthogonal interlock composites[J]. Composite Structures, 2015, 119:787-798.
[27] ISART N, EL SAID B, IVANOV D S, et al. Internal geometric modelling of 3D woven composites:a comparison between different approaches[J]. Composite Structures, 2015, 132:1219-1230.
[28] DURVILLE D. Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[J]. International Journal of Material Forming, 2010, 3(2):1241-1251.
[29] GREEN S D, LONG A C, EL SAID B S F, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures, 2014, 108:747-756.
[30] WANG Y, SUN X. Digital-element simulation of textile processes[J]. Composites Science and Technology,2001,61(2):311-319.
[31] WANG Y, MIAO Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles[J]. International Journal of Impact Engineering, 2010, 37(5):552-560.
[32] ZHOU G, SUN X, WANG Y. Multi-chain digital element analysis in textile mechanics[J]. Composites science and Technology, 2004, 64(2):239-244.
[33] NAOUAR N, VIDAL-SALLE E, SCHNEIDER J, et al. 3D composite reinforcement meso FE analyses based on X-ray computed tomography[J]. Composite Structures, 2015, 132:1094-1104.
[34] STRAUMIT I, LOMOV S V, WEVERS M. Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data[J]. Composites:Part A, 2015, 69:150-158.
[35] DESPLENTERE F, LOMOV S V, WOERDEMAN D L, et al. Micro-CT characterization of variability in 3D textile architecture[J]. Composites Science and Technology, 2005, 65(13):1920-1930.
[36] COX B N, DADKHAH M S. The macroscopic elasticity of 3D woven composites[J]. Journal of Composite Materials, 1995, 29(6):785-819.
[37] TAN P, TONG L, STEVEN G P. Micromechanics models for mechanical and thermomechanical properties of 3D through-the-thickness angle interlock woven composites[J]. Composites:Part A, 1999, 30(5):637-648.
[38] BUCHANAN S, GRIGORASH A, ARCHER E, et al. Analy-tical elastic stiffness model for 3D orthogonal interlock composites[J]. Compos Sci Technol, 2010,70(11):1597-1604.
[39] 朱永新,崔海涛,温卫东. 2.5维机织复合材料经向拉伸弹性模量预测与试验验证[J]. 复合材料学报, 2013, 30(3):198-204. ZHU Y X, CUI H T, WEN W D. Elastic property prediction and experimental verification in the warp direction of 2.5D woven composites[J]. Acta Materiae Compositae Sinica, 2013, 30(3):198-204.
[40] HALLAL A, YOUNES R, FARDOUN F, et al. Improved analytical model to predict the effective elastic properties of 2.5 D interlock woven fabrics composite[J]. Composite Structures, 2012, 94(10):3009-3028.
[41] HALLAL A. Modeling of elastic properties of textile composites[D]. Saint-Quentin:University of Versailles-Saint-Quentin en Yvelines, 2013.
[42] CHAMIS C C. Mechanics of composite materials:past, present, and future[J]. Journal of Composites, Technology and Research, 1989, 11(1):3-14.
[43] KIM S J, JI K H, PAIK S H. Numerical simulation of mechanical behavior of composite structures by supercomputing technology[J]. Advanced Composite Materials, 2008, 17(4):373-407.
[44] WANG X F, WANG X W, ZHOU G M, et al. Multi-scale analyses of 3D woven composite based on periodicity boundary conditions[J]. Journal of Composite Materials, 2007, 41(14):1773-1788.
[45] JIA X, XIA Z, GU B. Nonlinear viscoelastic multi-scale repetitive unit cell model of 3D woven composites with damage evolution[J]. International Journal of Solids and Structures, 2013, 50(22/23):3539-3554.
[46] ZHONG S, GUO L, LIU G, et al. A random waveness model for the stiffness and strength evaluation of 3D woven composites[J]. Composite Structures, 2016, 152:1024-1032.
[47] DAI S, CUNNINGHAM P R. Multi-scale damage modelling of 3D woven composites under uni-axial tension[J]. Composite Structures, 2016, 142:298-312.
[48] MRAZOVA M. Advanced composite materials of the future in aerospace industry[J]. Incas Bulletin, 2013, 5(3):139.
[49] MISRA A. Composite materials for aerospace propulsion related to air and space transportation[M].//NJUGUNA Lightweight Composite Structures in Transport.Kidlington:Woodhead Publishing,2016:305-327.
[50] NAYAK N V. Composite materials in aerospace applications[J]. International Journal of Scientific and Research Publications, 2014, 4(9):1-10.
[51] TAKAHASHI N,SATO T, FUJIWARA K, et al. Fod characteristics of titanium metal matrix composite (tmc) to apply aircraft landing gear structure[C].//St. Petersburg:Proceedings of 29th Congress of the International Council of the Aeronautical Sciences, 2014:52-61.
[52] ALBANY. Leap fan blade[EB/OL].[2019-05-06].
[53] ALBANY. Leap fan casing[EB/OL].[2019-05-06].
[54] ZOE GRANT. Chris wilson messier-bugatti-dowty safran group[EB/OL].[2019-05-06].
[55] BITEAM. Product sheet standard pi profiles[EB/OL].[2019-05-06].
[56] MOURITZ A P, BANNISTER M K, FALZON P J, et al. Review of applications for advanced three-dimensional fibre textile composites[J]. Composites:Part A, 1999,30:1445-1461.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[3] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
[4] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[5] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[6] 尹建成, 杨环, 刘英莉, 陈业高, 张八淇, 钟毅. 约束喷射沉积过程中雾化气流场的模拟研究[J]. 材料工程, 2018, 46(11): 102-109.
[7] 韩振宇, 梅海洋, 付云忠, 富宏亚. 三维编织预成型体的织造及三维编织复合材料细观结构研究进展[J]. 材料工程, 2018, 46(11): 25-36.
[8] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[9] 卢玉章, 熊英, 彭建强, 申健, 郑伟, 张功, 谢光. 重型燃机定向结晶空心叶片凝固过程的实验与模拟[J]. 材料工程, 2018, 46(1): 8-15.
[10] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[11] 朱庆丰, 张扬, 朱成, 班春燕, 崔建忠. 高纯铝多向锻造大塑性变形过程的数值模拟及实验研究[J]. 材料工程, 2017, 45(4): 15-20.
[12] 赵福泽, 朱绍珍, 冯小辉, 杨院生. 高能超声分散纳米晶须的数值和物理模拟[J]. 材料工程, 2016, 44(7): 13-18.
[13] 张敏, 徐蔼彦, 汪强, 李露露. Al-4%Cu凝固过程枝晶生长的数值模拟[J]. 材料工程, 2016, 44(6): 9-16.
[14] 陈平, 项欣, 李俊玲, 邵天敏, 刘光磊. 沟槽型织构摩擦学性能的数值模拟与实验研究[J]. 材料工程, 2016, 44(6): 31-37.
[15] 卢玉章, 申健, 郑伟, 徐正国, 张功, 谢光. 单晶铸件凝固过程工艺优化的数值模拟[J]. 材料工程, 2016, 44(11): 1-8.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持