Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (8): 1-13    DOI: 10.11868/j.issn.1001-4381.2020.000211
  复合材料专栏 本期目录 | 过刊浏览 | 高级检索 |
激励响应复合材料的4D打印及其应用研究进展
曾成均1, 刘立武1, 边文凤2, 冷劲松3, 刘彦菊1
1. 哈尔滨工业大学 航天科学与力学系, 哈尔滨 150001;
2. 哈尔滨工业大学(威海校区) 土木工程系, 山东 威海 264209;
3. 哈尔滨工业大学 特种环境复合材料技术国家级重点实验室, 哈尔滨 150080
Progress in 4D printing of stimulus-responsive composites and its applications
ZENG Cheng-jun1, LIU Li-wu1, BIAN Wen-feng2, LENG Jin-song3, LIU Yan-ju1
1. Department of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China;
2. Department of Civil Engineering, Harbin Institute of Technology, Weihai 264209, Shandong, China;
3. National Key Laboratory of Science and Technology on Advanced Composite in Special Environments, Harbin Institute of Technology, Harbin 150080, China
全文: PDF(8418 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 激励响应复合材料是一种智能材料,通常具有自感知、自主响应、形状记忆、自适应和自修复等特征。本文对4D打印中使用的激励响应材料进行了综述,重点介绍4D打印形状记忆复合水凝胶和形状记忆聚合物(SMP)及其复合材料的应用研究进展。最后,总结了4D打印在生物医疗和航空航天领域的应用现状,并对4D打印的未来发展趋势以及应用前景进行展望。4D打印是一项新兴制造技术,尽管目前已经出现了许多不同的打印方法、可打印智能材料和驱动方式,但是4D打印在实际工程应用中仍然面临许多挑战。新打印技术、新智能材料、新结构设计和建模软件需要发展以促进4D打印在软机器人、生物医学、航空航天和智能电子设备等领域的实际应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾成均
刘立武
边文凤
冷劲松
刘彦菊
关键词 4D打印形状记忆复合水凝胶形状记忆聚合物复合材料激励响应    
Abstract:The stimulus-response composite is a kind of intelligent material, which usually possesses the characteristics of self-perception, autonomous response, shape memory, adaptive and self-healing. The stimulus-response materials used in 4D printing were reviewed in this paper, and the application research progress of 4D printed shape memory composite hydrogels and shape memory polymers (SMPs) and their composites was focused. Finally, the application status of 4D printing in the biomedical and aerospace fields was summarized, and the development trend and application prospect of 4D printing were prospected. 4D printing is an emerging manufacturing technology. Although various printing methods, printable smart materials and driving methods have been developed, 4D printing still faces many challenges in practical engineering applications. Novel printing technologies, smart materials, structural design and modeling software need to be developed to facilitate the practical application of 4D printing in the fields of soft robotics, biomedicine, aerospace and intelligent electronic equipment.
Key words4D printing    shape memory composite hydrogels    shape memory polymers (SMPs)    composites    stimulus-response
收稿日期: 2020-03-12      出版日期: 2020-08-15
中图分类号:  TB332  
基金资助: 
通讯作者: 刘彦菊(1972-),女,教授,博士生导师,博士,研究方向为形状记忆聚合物、4D打印、智能材料与结构力学等,联系地址:黑龙江省哈尔滨市南岗区西大直街92号哈尔滨工业大学航天科学与力学系(150001),E-mail:yj_liu@hit.edu.cn;边文凤(1963-),女,教授,博士生导师,博士,研究方向为复合材料结构力学、断裂损伤力学、车辆及船舶动力学等,联系地址:山东省威海市文化西路2号哈尔滨工业大学(威海校区)土木工程系(264209),E-mail:bianwf@163.com     E-mail: yj_liu@hit.edu.cn;bianwf@163.com
引用本文:   
曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
ZENG Cheng-jun, LIU Li-wu, BIAN Wen-feng, LENG Jin-song, LIU Yan-ju. Progress in 4D printing of stimulus-responsive composites and its applications. Journal of Materials Engineering, 2020, 48(8): 1-13.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000211      或      http://jme.biam.ac.cn/CN/Y2020/V48/I8/1
[1] GAO W, ZHANG Y B, RAMANUJAN D, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Comput-Aided Design, 2015,69:65-89.
[2] TRUBY R L, LEWIS J A. Printing soft matter in three dimensions[J]. Nature, 2015, 540(7633):371-378.
[3] RASTOGI P, KANDASUBRAMANIAN B. Breakthrough in the printing tactics for stimuli responsive materials:4D printing[J]. Chemical Engineering Journal, 2019, 366:264-304.
[4] CHOI J, KWON O C, JO W, et al. 4D printing technology:a review[J]. 3D Printing and Additive Manufacturing, 2015,2:159-167.
[5] KHOO Z X, TEOH J E M, LIU Y, et al. 3D printing of smart materials:a review on recent progresses in 4D printing[J]. Virtual and Physical Prototyping, 2015, 10(3):103-122.
[6] DING Z, WEEGER O, QI H J, et al. 4D rods:3D structures via programmable 1D composite rods[J]. Materials & Design, 2018,137:256-265.
[7] AN J, TEOH J E M, SUNTORNNOND R, et al. Design and 3D printing of scaffolds and tissues[J]. Engineering, 2015, 1(2):261-268.
[8] LIU Y, XU Y, AVILA R, et al. 3D printed microstructures for flexible electronic devices[J]. Nanotechnology, 2019, 30(41):414001.
[9] ZOLFAGHARIAN A, KOUZANI A Z, KHOO S Y, et al. Evolution of 3D printed soft actuators[J]. Sensors and Actuators A:Physical, 2016,250:258-272.
[10] RAVIV D, ZHAO W, MCKNELLY C, et al. Active printed materials for complex self-evolving deformations[J]. Scientific Reports, 2014, 4:7422.
[11] CAMPBELL T A, TIBBITS S, GARRETT B. The next wave:4D printing programming the material world[R]. Washington, DC:The Atlantic Council, 2014:1-15.
[12] TIBBITS S. 4D printing:multi-material shape change[J]. Architectural Design, 2014, 84(1):116-121.
[13] GLADMAN A S, MATSUMOTO E A, NUZZO R G, et al. Biomimetic 4D printing[J]. Nature Materials, 2016, 15(4):413-418.
[14] MAO Y, DING Z, YUAN C, et al. 3D printed reversible shape changing components with stimuli responsive materials[J]. Scientific Reports, 2016, 6(1):1-13.
[15] ZHAO Z, KUANG X, YUAN C, et al. Hydrophilic/hydrophobic composite shape-shifting structures[J]. ACS Applied Materials & Interfaces, 2018, 10(23):19932-19939.
[16] BAKER A B, BATES S R, LLEWELLYN-JONES T M, et al. 4D printing with robust thermoplastic polyurethane hydrogel-elastomer trilayers[J]. Materials & Design, 2019,163:107544.
[17] KIM J, HANNA J A, HAYWARD R C, SANTANGELO C D. Thermally responsive rolling of thin gel strips with discrete variations in swelling[J]. Soft Matter, 2012, 8(8):2375-2381.
[18] ARMON S, EFRATI E, KUPFERMAN R, et al. Geometry and mechanics in the opening of chiral seed pods[J]. Science, 2011, 333(6050):1726-1730.
[19] NAFICY S, GATELY R, GORKIN III R, et al. 4D printing of reversible shape morphing hydrogel structures[J]. Macromolecular Materials and Engineering, 2017, 302(1):1600212.
[20] GUO J, ZHANG R, ZHANG L, et al. 4D printing of robust hydrogels consisted of agarose nanofibers and polyacrylamide[J]. ACS Macro Letters, 2018, 7(4):442-446.
[21] HAN D, FARINO C, YANG C, et al. Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel[J]. ACS Applied Materials & Interfaces, 2018, 10(21):17512-17518.
[22] DUIGOU A, CHABAUD G, SCARPA F, et al. Bioinspired electro-thermo-hygro reversible shape-changing materials by 4D printing[J]. Advanced Functional Materials, 2019, 29(40):1903280.
[23] GANG F, YAN H, MA C, et al. Robust magnetic double-network hydrogels with self-healing, MR imaging, cytocompatibility and 3D printability[J]. Chemical Communications, 2019, 55(66):9801-9804.
[24] CHEN Z, ZHAO D, LIU B, et al. 3D printing of multifunctional hydrogels[J]. Advanced Functional Materials, 2019, 29(20):1900971.
[25] ODENT J, VANDERSTAPPEN S, TONCHEVA A, et al. Hierarchical chemomechanical encoding of multi-responsive hydrogel actuators via 3D printing[J]. Journal of Materials Chemistry A, 2019, 7(25):15395-15403.
[26] GHOSH G, BARMAN R, SARKAR J, et al. pH-responsive biocompatible supramolecular peptide hydrogel[J]. The Journal of Physical Chemistry B, 2019, 123(27):5909-5915.
[27] Mu T, LIU L, LAN X, et al. Shape memory polymers for composites[J]. Composites Science and Technology, 2018(160):169-198.
[28] YU K, GE Q, QI H J. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers[J]. Nature Communications, 2014, 5(1):1-9.
[29] 魏洪秋,万雪,刘彦菊,等.4D打印形状记忆聚合物材料的研究现状与应用前景[J].中国科学:技术科学,2018, 48(1),2-16. WEI H Q, WAN X, LIU Y J, et al. 4D printing of shape memory polymers:research status and application prospects[J]. Scientia Sinica Technologica, 2018, 48(1):2-16.
[30] LEONARDI A B, FASCE L A, ZUCCHI I A, et al. Shape memory epoxies based on networks with chemical and physical crosslinks[J]. European Polymer Journal, 2011, 47(3):362-369.
[31] VOIT W, WARE T, DASARI R R, et al. High-strain shape-memory polymers[J]. Advanced Functional Materials, 2010, 20(1):162-171.
[32] 杜善义,冷劲松,王殿富.智能材料系统与结构[M].北京:科学出版社, 2001. DU S Y, LENG J S,WANG D F. Smart material systems and structures[M]. Beijing:Science Press, 2001.
[33] LENG J S, WU X L, LIU Y J. Effect of a linear monomer on the thermomechanical properties of epoxy shape-memory polymer[J]. Smart Materials and Structures, 2009, 18(9):095031.
[34] LENG J S, DU S Y. Shape-memory polymers and multifunctional composites[M].NY:CRC Press, 2010.
[35] 赵伟,刘立武,兰鑫,等.形状记忆聚合物复合材料在空间可展结构中的应用研究[J].载人航天,2016(5):594-601. ZHAO W, LIU L W, LAN X, et al. Study on application of shape-memory polymer composites in space deployable structures[J]. Manned Spaceflight, 2016(5):594-601.
[36] LENDLEIN A, JIANG H, JUNGER O, et al. Light-induced shape-memory polymers[J]. Nature, 2005, 434(7035):879-882.
[37] LIU Y J, LV H B, LAN X, et al. Review of electro-active shape-memory polymer composite[J]. Composites Science and Technology, 2009, 69(13):2064-2068.
[38] LENG J S, LAN X, LIU Y J, et al. Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains[J]. Applied Physics Letters, 2008, 92(1):014104.
[39] ZHANG F H, ZHANG Z C, LUO C J, et al. Remote, fast actuation of programmable multiple shape memory composites by magnetic fields[J]. Journal of Materials Chemistry C, 2015, 3(43):11290-11293.
[40] HAN X J, DONG Z Q, FAN M M, et al. pH-induced shape-memory polymers[J]. Macromolecular Rapid Communications, 2012, 33(12):1055-1060.
[41] LENDLEIN A, LANGER R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296(5573):1673-1676.
[42] ZAREK M, LAYANI M, COOPERSTEIN I, et al. 3D printing of shape memory polymers for flexible electronic devices[J]. Advanced Materials, 2016, 28(22):4449-4454.
[43] GE Q, SAKHAEI A H. LEE H, et al. Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports, 2016,6:31110.
[44] ZHAO T, YU R, LI X, et al. 4D printing of shape memory polyurethane via stereolithography[J]. European Polymer Journal, 2018,101:120-126.
[45] CHOONG Y Y C, MALEKSAEEDI S, ENG H, et al. 4D printing of high performance shape memory polymer using stereolithography[J]. Materials & Design, 2017,126:219-225.
[46] MIAO S, ZHU W, CASTRO N J, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate[J]. Scientific Reports, 2016,6:27226.
[47] ZHANG B, ZHANG W, ZHANG Z Q, et al. Self-Healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system[J]. ACS Applied Materials & Interfaces, 2019, 11(10):10328-10336.
[48] WU H Z, CHEN P, YAN C Z, et al. Four-dimensional printing of a novel acrylate-based shape memory polymer using digital light processing[J]. Materials & Design, 2019,171:107704.
[49] ZAREK M, LAYANI M, ELIAZAR S, et al. 4D printing shape memory polymers for dynamic jewellery and fashion wear[J]. Virtual and Physical Prototyping, 2016, 11(4):263-270.
[50] ZHANG Y, HUANG L M, SONG H J, et al. 4D printing of a digital shape memory polymer with tunable high performance[J]. ACS Applied Materials & Interfaces, 2019, 11(35):32408-32413.
[51] INVERNIZZI M, TURRI S, LEVI M, et al. 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers[J]. European Polymer Journal, 2018,101:169-176.
[52] KUANG X, WU J, CHEN K,et al. Grayscale digital light processing 3D printing for highly functionally graded materials[J]. Science Advances, 2019, 5(5):5790.
[53] INKINEN S, HAKKARAINEN M, ALBERTSSON A C, et al. From lactic acid to poly (lactic acid)(PLA):characterization and analysis of PLA and its precursors[J]. Biomacromolecules, 2011, 12(3):523-532.
[54] APPUHAMILLAGE G A, REAGAN J C, KHORSANDI S, et al. 3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels-Alder reaction[J]. Polymer Chemistry, 2017, 8(13):2087-2092.
[55] ZHANG Q, YAN D, ZHANG K, et al. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique[J]. Scientific Reports, 2015,5:8936.
[56] Van MANEN T, JANBAZ S, ZADPOOR A A. Programming 2D/3D shape-shifting with hobbyist 3D printers[J]. Materials Horizons, 2017, (4) 6:1064-1069.
[57] ZHANG Q L, HUA W Q, FENG J C. A facile strategy to fabricate multishape memory polymers with controllable mechanical properties[J]. Macromolecular Rapid Communications, 2016, (37) 15:1262-1267.
[58] HOEHER R, RAIDT T, KATZENBERG F, et al. Heating rate sensitive multi-shape memory polypropylene:a predictive material[J]. ACS Applied Materials & Interfaces, 2016, 8(22):13684-13687.
[59] BAE C Y, PARK J H, KIM E Y, et al. Organic-inorganic nanocomposite bilayers with triple shape memory effect[J]. Journal of Materials Chemistry, 2011, 21(30):11288-11295.
[60] CHEN S Y, ZHANG Q L, FENG J C. 3D printing of tunable shape memory polymer blends[J]. Journal of Materials Chemistry C, 2017, (5) 33:8361-8365.
[61] WANG J C, WANG Z G, SONG Z Y, et al. Programming multistage shape memory and variable recovery force with 4D printing parameters[J]. Advanced Materials Technologies, 2019, 4(11):1900535.
[62] SHI Q, YU K, KUANG X, et al. Recyclable 3D printing of vitrimer epoxy[J]. Materials Horizons, 2017, 4(4):598-607.
[63] CHEN K J, KUANG X, LI V,et al.Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing[J]. Soft Matter, 2018, 14(10):1879-1886.
[64] WAN X, WEI H Q, ZHNG F H, et al. 3D printing of shape memory poly (d, l-lactide-co-trimethylene carbonate) by direct ink writing for shape-changing structures[J]. Journal of Applied Polymer Science, 2019, 136(44):48177.
[65] LY S T, KIM J Y. 4D printing-fused deposition modeling printing with thermal-responsive shape memory polymers[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(3):267-272.
[66] ZHUANG Y, SONG W T, NING G, et al. 3D-printing of materials with anisotropic heat distribution using conductive polylactic acid composites[J]. Materials & Design, 2017,126:135-140.
[67] WANG Q, TIAN, X Y, HUANG L, et al.Programmable morphing composites with embedded continuous fibers by 4D printing[J]. Materials & Design, 2018,155:404-413.
[68] YANG C C, WANG B J, LI D C. Modelling and characterisation for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing[J]. Virtual and Physical Prototyping, 2017, 12(1):69-76.
[69] 李春妍,张风华,王亚立,等.4D打印形状记忆聚合物在生物医疗领域的研究进展[J].中国科学:技术科学,2018,49(1):13-25. LI C Y, ZHANG F H, WANG Y L, et al. Development of 4D printed shape memory polymers in biomedical field[J]. Scientia Sinica Technologica, 2018, 49(1):13-25.
[70] LIN C, LV J X, LI Y S, et al. 4D-printed biodegradable and remotely controllable shape memory occlusion devices[J]. Advanced Functional Materials, 2019, 29(51):1906569.
[71] HENDRIKSON W J, ROUWKEMA J, CLEMENTI F, et al. Towards 4D printed scaffolds for tissue engineering:exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells[J]. Biofabrication, 2017, 9(3):031001.
[72] ZHAO W, ZHANG F H, LENG J S, et al. Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites[J]. Composites Science and Technology, 2019,184:107866.
[73] ZHANG F H, WANG L L, ZHENG Z C,et al. Magnetic programming of 4D printed shape memory composite structures[J].Composites:Part A,2019,125:105571.
[74] GAO B, YANG Q Z, ZHAO X,et al. 4D bioprinting for biomedical applications[J].Trends Biotechnol, 2016, 34(9):746-756.
[75] ZAREK M, MANSOUR N, SHAPIRA S, et al. 4D printing of shape memory-based personalized endoluminal medical devices[J]. Macromolecular Rapid Communications, 2017, 38(2):1600628.
[76] NOROTTE C, MARGA F S, NIKLASON L E, et al. Scaffold-free vascular tissue engineering using bioprinting[J]. Biomaterials, 2009, 30:5910-5917.
[77] LU Y, AIMETTI A A, LANGER R, et al. Bioresponsive materials[J]. Nature Reviews Materials, 2016, 2(1):1-17.
[78] MITCHELL A, LAFONT U, HOLYNSKA M, et al. Additive manufacturing-a review of 4D printing and future applications[J]. Additive Manufacturing, 2018,24:606-626.
[79] HOYT R P. SpiderFab:an architecture for self-fabricating space systems[C]//AIAA Space 2013 Conference and Exposition,2013:5509.
[80] KUANG X, ROACH D J, WU J, et al. Advances in 4D printing:materials and applications[J]. Advanced Functional Materials, 2019, 29(2):1805290.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[5] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[6] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[7] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[8] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[9] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[10] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[11] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[12] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[13] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[14] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
[15] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn